Suppr超能文献

单细胞中亚细胞定位的基因邻居网络。

Subcellular spatially resolved gene neighborhood networks in single cells.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.

Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Cell Rep Methods. 2023 May 12;3(5):100476. doi: 10.1016/j.crmeth.2023.100476. eCollection 2023 May 22.

Abstract

Image-based spatial omics methods such as fluorescence hybridization (FISH) generate molecular profiles of single cells at single-molecule resolution. Current spatial transcriptomics methods focus on the distribution of single genes. However, the spatial proximity of RNA transcripts can play an important role in cellular function. We demonstrate a spatially resolved gene neighborhood network (spaGNN) pipeline for the analysis of subcellular gene proximity relationships. In spaGNN, machine-learning-based clustering of subcellular spatial transcriptomics data yields subcellular density classes of multiplexed transcript features. The nearest-neighbor analysis produces heterogeneous gene proximity maps in distinct subcellular regions. We illustrate the cell-type-distinguishing capability of spaGNN using multiplexed error-robust FISH data of fibroblast and U2-OS cells and sequential FISH data of mesenchymal stem cells (MSCs), revealing tissue-source-specific MSC transcriptomics and spatial distribution characteristics. Overall, the spaGNN approach expands the spatial features that can be used for cell-type classification tasks.

摘要

基于图像的空间组学方法,如荧光杂交(FISH),可以在单细胞水平上以单分子分辨率生成分子图谱。目前的空间转录组学方法主要关注单个基因的分布。然而,RNA 转录本的空间接近性在细胞功能中起着重要作用。我们展示了一种用于分析亚细胞基因邻近关系的基于空间分辨基因邻域网络(spaGNN)的分析方法。在 spaGNN 中,基于机器学习的亚细胞空间转录组学数据聚类产生了多路转录特征的亚细胞密度类。最近邻分析产生了不同亚细胞区域的异质基因邻近图谱。我们使用成纤维细胞和 U2-OS 细胞的多路抗误差 FISH 数据和间充质干细胞(MSCs)的顺序 FISH 数据说明了 spaGNN 的细胞类型区分能力,揭示了组织来源特异性 MSCs 转录组学和空间分布特征。总的来说,spaGNN 方法扩展了可用于细胞类型分类任务的空间特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b2a/10261906/5a06dd184c24/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验