Division of Chemistry and Chemical Engineering, Caltech, Pasadena, CA 91125, USA.
Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA.
Cell Syst. 2024 May 15;15(5):475-482.e6. doi: 10.1016/j.cels.2024.04.006.
Image-based spatial transcriptomics methods enable transcriptome-scale gene expression measurements with spatial information but require complex, manually tuned analysis pipelines. We present Polaris, an analysis pipeline for image-based spatial transcriptomics that combines deep-learning models for cell segmentation and spot detection with a probabilistic gene decoder to quantify single-cell gene expression accurately. Polaris offers a unifying, turnkey solution for analyzing spatial transcriptomics data from multiplexed error-robust FISH (MERFISH), sequential fluorescence in situ hybridization (seqFISH), or in situ RNA sequencing (ISS) experiments. Polaris is available through the DeepCell software library (https://github.com/vanvalenlab/deepcell-spots) and https://www.deepcell.org.
基于图像的空间转录组学方法能够以空间信息为基础测量转录组规模的基因表达,但需要复杂的、人工调整的分析管道。我们提出了 Polaris,这是一种用于基于图像的空间转录组学的分析管道,它将用于细胞分割和斑点检测的深度学习模型与概率基因解码器相结合,以准确量化单细胞基因表达。Polaris 为分析来自多重抗误差荧光原位杂交 (MERFISH)、顺序荧光原位杂交 (seqFISH) 或原位 RNA 测序 (ISS) 实验的空间转录组学数据提供了一个统一的、即用型解决方案。Polaris 可通过 DeepCell 软件库 (https://github.com/vanvalenlab/deepcell-spots) 和 https://www.deepcell.org 使用。