Suppr超能文献

基于接受免疫治疗的晚期黑色素瘤患者的真实世界电子健康记录和图像数据来模拟肿瘤大小动态。

Modeling tumor size dynamics based on real-world electronic health records and image data in advanced melanoma patients receiving immunotherapy.

机构信息

Precision Oncology Center, Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2023 Aug;12(8):1170-1181. doi: 10.1002/psp4.12983. Epub 2023 Jun 16.

Abstract

The development of immune checkpoint inhibitors (ICIs) has revolutionized cancer therapy but only a fraction of patients benefits from this therapy. Model-informed drug development can be used to assess prognostic and predictive clinical factors or biomarkers associated with treatment response. Most pharmacometric models have thus far been developed using data from randomized clinical trials, and further studies are needed to translate their findings into the real-world setting. We developed a tumor growth inhibition model based on real-world clinical and imaging data in a population of 91 advanced melanoma patients receiving ICIs (i.e., ipilimumab, nivolumab, and pembrolizumab). Drug effect was modeled as an ON/OFF treatment effect, with a tumor killing rate constant identical for the three drugs. Significant and clinically relevant covariate effects of albumin, neutrophil to lymphocyte ratio, and Eastern Cooperative Oncology Group (ECOG) performance status were identified on the baseline tumor volume parameter, as well as NRAS mutation on tumor growth rate constant using standard pharmacometric approaches. In a population subgroup (n = 38), we had the opportunity to conduct an exploratory analysis of image-based covariates (i.e., radiomics features), by combining machine learning and conventional pharmacometric covariate selection approaches. Overall, we demonstrated an innovative pipeline for longitudinal analyses of clinical and imaging RWD with a high-dimensional covariate selection method that enabled the identification of factors associated with tumor dynamics. This study also provides a proof of concept for using radiomics features as model covariates.

摘要

免疫检查点抑制剂 (ICIs) 的发展彻底改变了癌症治疗方法,但只有一部分患者从中受益。基于模型的药物开发可用于评估与治疗反应相关的预后和预测性临床因素或生物标志物。迄今为止,大多数药代动力学模型都是使用来自随机临床试验的数据开发的,需要进一步的研究将其发现转化为实际情况。我们基于接受 ICI(即伊匹单抗、纳武利尤单抗和派姆单抗)的 91 名晚期黑色素瘤患者的真实临床和影像数据开发了一个肿瘤生长抑制模型。药物作用被建模为 ON/OFF 治疗效果,三种药物的肿瘤杀伤速率常数相同。使用标准药代动力学方法,在基线肿瘤体积参数上确定了白蛋白、中性粒细胞与淋巴细胞比值和东部合作肿瘤组 (ECOG) 表现状态的显著和临床相关的协变量作用,以及 NRAS 突变对肿瘤生长速率常数的影响。在一个人群亚组 (n=38) 中,我们有机会通过结合机器学习和传统药代动力学协变量选择方法,对影像衍生数据 (即放射组学特征) 进行探索性分析。总的来说,我们展示了一种用于对具有高维协变量选择方法的临床和影像 RWD 进行纵向分析的创新流程,该方法能够识别与肿瘤动力学相关的因素。这项研究还为使用放射组学特征作为模型协变量提供了概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff5/10431051/e6d891b9d443/PSP4-12-1170-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验