Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota; Othropedic Surgery Artificial Intelligence Lab (OSAIL), Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.
Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota.
J Arthroplasty. 2023 Oct;38(10):1990-1997.e1. doi: 10.1016/j.arth.2023.06.027. Epub 2023 Jun 17.
Studies developing predictive models from large datasets to risk-stratify patients under going revision total hip arthroplasties (rTHAs) are limited. We used machine learning (ML) to stratify patients undergoing rTHA into risk-based subgroups.
We retrospectively identified 7,425 patients who underwent rTHA from a national database. An unsupervised random forest algorithm was used to partition patients into high-risk and low-risk strata based on similarities in rates of mortality, reoperation, and 25 other postoperative complications. A risk calculator was produced using a supervised ML algorithm to identify high-risk patients based on preoperative parameters.
There were 3,135 and 4,290 patients identified in the high-risk and low-risk subgroups, respectively. Each group significantly differed by rate of 30-day mortalities, unplanned reoperations/readmissions, routine discharges, and hospital lengths of stay (P < .05). An Extreme Gradient Boosting algorithm identified preoperative platelets < 200, hematocrit > 35 or < 20, increasing age, albumin < 3, international normalized ratio > 2, body mass index > 35, American Society of Anesthesia class ≥ 3, blood urea nitrogen > 50 or < 30, creatinine > 1.5, diagnosis of hypertension or coagulopathy, and revision for periprosthetic fracture and infection as predictors of high risk.
Clinically meaningful risk strata in patients undergoing rTHA were identified using an ML clustering approach. Preoperative labs, demographics, and surgical indications have the greatest impact on differentiating high versus low risk.
III.
从大型数据集开发预测模型以对接受翻修全髋关节置换术(rTHA)的患者进行风险分层的研究有限。我们使用机器学习(ML)将接受 rTHA 的患者分层为基于风险的亚组。
我们从国家数据库中回顾性地确定了 7425 名接受 rTHA 的患者。使用无监督随机森林算法根据死亡率、再次手术和 25 种其他术后并发症的发生率相似性将患者分为高风险和低风险亚组。使用监督 ML 算法生成风险计算器,根据术前参数识别高风险患者。
高风险和低风险亚组分别有 3135 名和 4290 名患者。两组在 30 天死亡率、计划外再次手术/再入院、常规出院和住院时间方面差异均有统计学意义(P <.05)。极端梯度提升算法确定了术前血小板 < 200、血细胞比容 > 35 或 < 20、年龄增加、白蛋白 < 3、国际标准化比值 > 2、体重指数 > 35、美国麻醉医师协会分级≥3、血尿素氮 > 50 或 < 30、肌酐 > 1.5、诊断为高血压或凝血障碍,以及翻修假体周围骨折和感染是高风险的预测因素。
使用 ML 聚类方法确定了接受 rTHA 的患者中有意义的风险分层。术前实验室检查、人口统计学和手术指征对区分高风险与低风险的影响最大。
III 级。