Zsidai Bálint, Kaarre Janina, Narup Eric, Hamrin Senorski Eric, Pareek Ayoosh, Grassi Alberto, Ley Christophe, Longo Umile Giuseppe, Herbst Elmar, Hirschmann Michael T, Kopf Sebastian, Seil Romain, Tischer Thomas, Samuelsson Kristian, Feldt Robert
Sahlgrenska Sports Medicine Center Gothenburg Sweden.
Department of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy University of Gothenburg Gothenburg Sweden.
J Exp Orthop. 2024 May 7;11(3):e12025. doi: 10.1002/jeo2.12025. eCollection 2024 Jul.
Recent advances in artificial intelligence (AI) present a broad range of possibilities in medical research. However, orthopaedic researchers aiming to participate in research projects implementing AI-based techniques require a sound understanding of the technical fundamentals of this rapidly developing field. Initial sections of this technical primer provide an overview of the general and the more detailed taxonomy of AI methods. Researchers are presented with the technical basics of the most frequently performed machine learning (ML) tasks, such as classification, regression, clustering and dimensionality reduction. Additionally, the spectrum of supervision in ML including the domains of supervised, unsupervised, semisupervised and self-supervised learning will be explored. Recent advances in neural networks (NNs) and deep learning (DL) architectures have rendered them essential tools for the analysis of complex medical data, which warrants a rudimentary technical introduction to orthopaedic researchers. Furthermore, the capability of natural language processing (NLP) to interpret patterns in human language is discussed and may offer several potential applications in medical text classification, patient sentiment analysis and clinical decision support. The technical discussion concludes with the transformative potential of generative AI and large language models (LLMs) on AI research. Consequently, this second article of the series aims to equip orthopaedic researchers with the fundamental technical knowledge required to engage in interdisciplinary collaboration in AI-driven orthopaedic research.
Level IV.
人工智能(AI)的最新进展为医学研究带来了广泛的可能性。然而,旨在参与实施基于AI技术的研究项目的骨科研究人员需要对这个快速发展领域的技术基础有扎实的理解。本技术入门的初始部分概述了AI方法的一般分类和更详细的分类。向研究人员介绍了最常执行的机器学习(ML)任务的技术基础,如分类、回归、聚类和降维。此外,还将探讨ML中的监督范围,包括监督学习、无监督学习、半监督学习和自监督学习领域。神经网络(NN)和深度学习(DL)架构的最新进展使其成为分析复杂医学数据的重要工具,这值得向骨科研究人员进行基本的技术介绍。此外,还讨论了自然语言处理(NLP)解释人类语言模式的能力,其在医学文本分类、患者情绪分析和临床决策支持中可能有多种潜在应用。技术讨论以生成式AI和大语言模型(LLM)对AI研究的变革潜力作为结束。因此,本系列的第二篇文章旨在为骨科研究人员提供在AI驱动的骨科研究中进行跨学科合作所需的基本技术知识。
IV级。