Suppr超能文献

在重症监护病房使用神经网络预测结果。

Predicting outcomes using neural networks in the intensive care unit.

作者信息

Sridhar Gumpeny R, Yarabati Venkat, Gumpeny Lakshmi

机构信息

Department of Endocrinology and Diabetes, Endocrine and Diabetes Centre, Visakhapatnam 530002, India.

Chief Architect, Data and Insights, AGILISYS, London W127RZ, United Kingdom.

出版信息

World J Clin Cases. 2025 Apr 16;13(11):100966. doi: 10.12998/wjcc.v13.i11.100966.

Abstract

Patients in intensive care units (ICUs) require rapid critical decision making. Modern ICUs are data rich, where information streams from diverse sources. Machine learning (ML) and neural networks (NN) can leverage the rich data for prognostication and clinical care. They can handle complex nonlinear relationships in medical data and have advantages over traditional predictive methods. A number of models are used: (1) Feedforward networks; and (2) Recurrent NN and convolutional NN to predict key outcomes such as mortality, length of stay in the ICU and the likelihood of complications. Current NN models exist in silos; their integration into clinical workflow requires greater transparency on data that are analyzed. Most models that are accurate enough for use in clinical care operate as 'black-boxes' in which the logic behind their decision making is opaque. Advances have occurred to see through the opacity and peer into the processing of the black-box. In the near future ML is positioned to help in clinical decision making far beyond what is currently possible. Transparency is the first step toward validation which is followed by clinical trust and adoption. In summary, NNs have the transformative ability to enhance predictive accuracy and improve patient management in ICUs. The concept should soon be turning into reality.

摘要

重症监护病房(ICU)的患者需要迅速做出关键决策。现代ICU数据丰富,信息来源于多种渠道。机器学习(ML)和神经网络(NN)可以利用这些丰富的数据进行预后评估和临床护理。它们能够处理医学数据中的复杂非线性关系,比传统预测方法更具优势。常用的模型有:(1)前馈网络;(2)循环神经网络和卷积神经网络,用于预测诸如死亡率、ICU住院时长以及并发症发生可能性等关键结果。当前的神经网络模型各自为政;将它们整合到临床工作流程中需要对所分析的数据有更高的透明度。大多数在临床护理中足够准确的模型都像“黑匣子”一样运作,其决策背后的逻辑是不透明的。目前已经取得了一些进展,能够看透这种不透明性并深入了解黑匣子的处理过程。在不久的将来,机器学习有望在临床决策中发挥作用,其作用将远超当前的可能范围。透明度是迈向验证的第一步,随后是临床信任和应用。总之,神经网络具有变革性能力,能够提高预测准确性并改善ICU中的患者管理。这一概念很快就会成为现实。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0993/11718574/9067f5a747a1/100966-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验