Suppr超能文献

直接和间接神经发生在大脑皮层中产生了一系列不同的谷氨酸能投射神经元类型。

Direct and indirect neurogenesis generate a mosaic of distinct glutamatergic projection neuron types in cerebral cortex.

机构信息

Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA.

出版信息

Neuron. 2023 Aug 16;111(16):2557-2569.e4. doi: 10.1016/j.neuron.2023.05.021. Epub 2023 Jun 21.

Abstract

Variations in size and complexity of the cerebral cortex result from differences in neuron number and composition, rooted in evolutionary changes in direct and indirect neurogenesis (dNG and iNG) that are mediated by radial glia and intermediate progenitors (IPs), respectively. How dNG and iNG differentially contribute to neuronal number, diversity, and connectivity are unknown. Establishing a genetic fate-mapping method to differentially visualize dNG and iNG in mice, we found that while both dNG and iNG contribute to all cortical structures, iNG contributes the largest relative proportions to the hippocampus and neocortex. Within the neocortex, whereas dNG generates all major glutamatergic projection neuron (PN) classes, iNG differentially amplifies and diversifies PNs within each class; the two pathways generate distinct PN types and assemble fine mosaics of lineage-based cortical subnetworks. Our results establish a ground-level lineage framework for understanding cortical development and evolution by linking foundational progenitor types and neurogenic pathways to PN types.

摘要

大脑皮层的大小和复杂性的变化源于神经元数量和组成的差异,这些差异源于直接和间接神经发生(dNG 和 iNG)的进化变化,这分别由放射状胶质细胞和中间祖细胞(IPs)介导。dNG 和 iNG 如何差异地影响神经元数量、多样性和连接性尚不清楚。建立一种遗传示踪方法来区分地可视化小鼠中的 dNG 和 iNG,我们发现尽管 dNG 和 iNG 都有助于所有皮质结构,但 iNG 对海马体和新皮质的相对比例最大。在新皮层中,虽然 dNG 产生所有主要的谷氨酸能投射神经元(PN)类,但 iNG 在每个类内差异放大和多样化 PN;这两种途径产生不同的 PN 类型,并组装基于谱系的皮质子网的精细镶嵌图。我们的结果通过将基础祖细胞类型和神经发生途径与 PN 类型联系起来,为理解皮质发育和进化建立了一个基础的谱系框架。

相似文献

1
Direct and indirect neurogenesis generate a mosaic of distinct glutamatergic projection neuron types in cerebral cortex.
Neuron. 2023 Aug 16;111(16):2557-2569.e4. doi: 10.1016/j.neuron.2023.05.021. Epub 2023 Jun 21.
3
The progenitor basis of cortical projection neuron diversity.
Curr Opin Neurobiol. 2023 Aug;81:102726. doi: 10.1016/j.conb.2023.102726. Epub 2023 May 4.
4
Neural progenitors, neurogenesis and the evolution of the neocortex.
Development. 2014 Jun;141(11):2182-94. doi: 10.1242/dev.090571.
5
Evolution of Cortical Neurogenesis in Amniotes Controlled by Robo Signaling Levels.
Cell. 2018 Jul 26;174(3):590-606.e21. doi: 10.1016/j.cell.2018.06.007. Epub 2018 Jun 28.
6
Molecular and cellular evolution of corticogenesis in amniotes.
Cell Mol Life Sci. 2020 Apr;77(8):1435-1460. doi: 10.1007/s00018-019-03315-x. Epub 2019 Sep 28.
8
Cerebral cortex development: an outside-in perspective.
FEBS Lett. 2017 Dec;591(24):3978-3992. doi: 10.1002/1873-3468.12924. Epub 2017 Dec 14.
10
Cerebral cortex assembly: generating and reprogramming projection neuron diversity.
Trends Neurosci. 2015 Feb;38(2):117-25. doi: 10.1016/j.tins.2014.11.003. Epub 2014 Dec 17.

引用本文的文献

1
2
Environmental adversity, endoplasmic reticulum stress, and neurogenesis.
Neurotoxicology. 2025 Jul;109:32-45. doi: 10.1016/j.neuro.2025.05.010. Epub 2025 May 31.
3
A human-specific enhancer fine-tunes radial glia potency and corticogenesis.
Nature. 2025 May 14. doi: 10.1038/s41586-025-09002-1.
6
Syngap1 and the development of murine neocortical progenitor cells.
bioRxiv. 2024 Dec 20:2024.12.18.629233. doi: 10.1101/2024.12.18.629233.
8
Which neurodevelopmental processes continue in humans after birth?
Front Neurosci. 2024 Sep 6;18:1434508. doi: 10.3389/fnins.2024.1434508. eCollection 2024.
10
Indirect neurogenesis in space and time.
Nat Rev Neurosci. 2024 Aug;25(8):519-534. doi: 10.1038/s41583-024-00833-x. Epub 2024 Jul 1.

本文引用的文献

1
Genetic dissection of the glutamatergic neuron system in cerebral cortex.
Nature. 2021 Oct;598(7879):182-187. doi: 10.1038/s41586-021-03955-9. Epub 2021 Oct 6.
2
The Lamprey Forebrain - Evolutionary Implications.
Brain Behav Evol. 2022;96(4-6):318-333. doi: 10.1159/000517492. Epub 2021 Jun 30.
4
Neocortex expansion in development and evolution-from genes to progenitor cell biology.
Curr Opin Cell Biol. 2021 Dec;73:9-18. doi: 10.1016/j.ceb.2021.04.008. Epub 2021 Jun 4.
5
A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation.
Cell. 2021 Jun 10;184(12):3222-3241.e26. doi: 10.1016/j.cell.2021.04.021. Epub 2021 May 17.
6
The regulation of cortical neurogenesis.
Curr Top Dev Biol. 2021;142:1-66. doi: 10.1016/bs.ctdb.2020.10.003. Epub 2020 Dec 26.
7
Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits.
Science. 2021 Feb 12;371(6530). doi: 10.1126/science.abd9704.
10
Molecular and cellular evolution of corticogenesis in amniotes.
Cell Mol Life Sci. 2020 Apr;77(8):1435-1460. doi: 10.1007/s00018-019-03315-x. Epub 2019 Sep 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验