Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience and Medical Scientist Training Program, Stony Brook University, Stony Brook, NY 11794, USA.
Neuron. 2023 Aug 16;111(16):2557-2569.e4. doi: 10.1016/j.neuron.2023.05.021. Epub 2023 Jun 21.
Variations in size and complexity of the cerebral cortex result from differences in neuron number and composition, rooted in evolutionary changes in direct and indirect neurogenesis (dNG and iNG) that are mediated by radial glia and intermediate progenitors (IPs), respectively. How dNG and iNG differentially contribute to neuronal number, diversity, and connectivity are unknown. Establishing a genetic fate-mapping method to differentially visualize dNG and iNG in mice, we found that while both dNG and iNG contribute to all cortical structures, iNG contributes the largest relative proportions to the hippocampus and neocortex. Within the neocortex, whereas dNG generates all major glutamatergic projection neuron (PN) classes, iNG differentially amplifies and diversifies PNs within each class; the two pathways generate distinct PN types and assemble fine mosaics of lineage-based cortical subnetworks. Our results establish a ground-level lineage framework for understanding cortical development and evolution by linking foundational progenitor types and neurogenic pathways to PN types.
大脑皮层的大小和复杂性的变化源于神经元数量和组成的差异,这些差异源于直接和间接神经发生(dNG 和 iNG)的进化变化,这分别由放射状胶质细胞和中间祖细胞(IPs)介导。dNG 和 iNG 如何差异地影响神经元数量、多样性和连接性尚不清楚。建立一种遗传示踪方法来区分地可视化小鼠中的 dNG 和 iNG,我们发现尽管 dNG 和 iNG 都有助于所有皮质结构,但 iNG 对海马体和新皮质的相对比例最大。在新皮层中,虽然 dNG 产生所有主要的谷氨酸能投射神经元(PN)类,但 iNG 在每个类内差异放大和多样化 PN;这两种途径产生不同的 PN 类型,并组装基于谱系的皮质子网的精细镶嵌图。我们的结果通过将基础祖细胞类型和神经发生途径与 PN 类型联系起来,为理解皮质发育和进化建立了一个基础的谱系框架。