Suppr超能文献

临床与遗传心房颤动风险及心源性与非心源性卒中的鉴别。

Clinical and Genetic Atrial Fibrillation Risk and Discrimination of Cardioembolic From Noncardioembolic Stroke.

机构信息

Cardiovascular Research Center, Massachusetts General Hospital, Boston (L.-C.W., S.K., P.T.E., S.A.L.).

Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (L.-C.W., S.K., S.G., P.T.E., S.A.L.).

出版信息

Stroke. 2023 Jul;54(7):1777-1785. doi: 10.1161/STROKEAHA.122.041533. Epub 2023 Jun 26.

Abstract

BACKGROUND

Stroke is a leading cause of death and disability worldwide. Atrial fibrillation (AF) is a common cause of stroke but may not be detectable at the time of stroke. We hypothesized that an AF polygenic risk score (PRS) can discriminate between cardioembolic stroke and noncardioembolic strokes.

METHODS

We evaluated AF and stroke risk in 26 145 individuals of European descent from the Stroke Genetics Network case-control study. AF genetic risk was estimated using 3 recently developed PRS methods (LDpred-funct-inf, sBayesR, and PRS-CS) and 2 previously validated PRSs. We performed logistic regression of each AF PRS on AF status and separately cardioembolic stroke, adjusting for clinical risk score (CRS), imputation group, and principal components. We calculated model discrimination of AF and cardioembolic stroke using the concordance statistic (c-statistic) and compared c-statistics using 2000-iteration bootstrapping. We also assessed reclassification of cardioembolic stroke with the addition of PRS to either CRS or a modified CHADS-VASc score alone.

RESULTS

Each AF PRS was significantly associated with AF and with cardioembolic stroke after adjustment for CRS. Addition of each AF PRS significantly improved discrimination as compared with CRS alone (<0.01). When combined with the CRS, both PRS-CS and LDpred scores discriminated both AF and cardioembolic stroke (c-statistic 0.84 for AF; 0.74 for cardioembolic stroke) better than 3 other PRS scores (<0.01). Using PRS-CS PRS and CRS in combination resulted in more appropriate reclassification of stroke events as compared with CRS alone (event reclassification [net reclassification indices]=14% [95% CI, 10%-18%]; nonevent reclassification [net reclassification indices]=17% [95% CI, 15%-0.19%]) or the modified CHADS-VASc score (net reclassification indices=11% [95% CI, 7%-15%]; net reclassification indices=14% [95% CI, 12%-16%]) alone.

CONCLUSIONS

Addition of polygenic risk of AF to clinical risk factors modestly improves the discrimination of cardioembolic from noncardioembolic strokes, as well as reclassification of stroke subtype. Polygenic risk of AF may be a useful biomarker for identifying strokes caused by AF.

摘要

背景

中风是全球范围内导致死亡和残疾的主要原因。心房颤动(AF)是中风的常见原因,但在中风发生时可能无法检测到。我们假设,AF 多基因风险评分(PRS)可以区分心源性脑卒中和非心源性脑卒。

方法

我们评估了欧洲血统的 26145 名中风遗传学网络病例对照研究中的 AF 和中风风险。使用 3 种最近开发的 PRS 方法(LDpred-funct-inf、sBayesR 和 PRS-CS)和 2 种先前验证的 PRS 来估计 AF 遗传风险。我们对每个 AF PRS 进行了 AF 状态和心源性脑卒的逻辑回归,调整了临床风险评分(CRS)、插补组和主成分。我们使用 2000 次迭代的自举法计算了 AF 和心源性脑卒的模型区分度(一致性统计量),并比较了使用 CRS 或改良 CHADS-VASc 评分单独加 PRS 时的 c 统计量。我们还评估了在 CRS 或改良 CHADS-VASc 评分上增加 PRS 对心源性脑卒的重新分类。

结果

在调整 CRS 后,每个 AF PRS 与 AF 和心源性脑卒均有显著关联。与单独使用 CRS 相比,添加每个 AF PRS 均显著提高了区分度(<0.01)。当与 CRS 联合使用时,PRS-CS 和 LDpred 评分均能更好地区分 AF 和心源性脑卒(AF 的 c 统计量为 0.84;心源性脑卒的 c 统计量为 0.74)(<0.01)。与单独使用 CRS 相比,使用 PRS-CS PRS 和 CRS 联合可更准确地重新分类中风事件(事件重新分类[净重新分类指数]=14%[95%CI,10%-18%];非事件重新分类[净重新分类指数]=17%[95%CI,15%-0.19%])或改良 CHADS-VASc 评分(净重新分类指数=11%[95%CI,7%-15%];净重新分类指数=14%[95%CI,12%-16%])。

结论

将 AF 的多基因风险添加到临床危险因素中,可适度提高心源性脑卒和非心源性脑卒的区分度,以及中风亚型的重新分类。AF 的多基因风险可能是识别由 AF 引起的中风的有用生物标志物。

相似文献

1
Clinical and Genetic Atrial Fibrillation Risk and Discrimination of Cardioembolic From Noncardioembolic Stroke.
Stroke. 2023 Jul;54(7):1777-1785. doi: 10.1161/STROKEAHA.122.041533. Epub 2023 Jun 26.
2
Atrial Fibrillation Risk and Discrimination of Cardioembolic From Noncardioembolic Stroke.
Stroke. 2020 May;51(5):1396-1403. doi: 10.1161/STROKEAHA.120.028837. Epub 2020 Apr 7.
3
Predicting Atrial Fibrillation After Stroke by Combining Polygenic Risk Scores and Clinical Features.
Stroke. 2025 Apr;56(4):878-886. doi: 10.1161/STROKEAHA.124.050123. Epub 2025 Jan 30.
4
Polygenic risk scores in atrial fibrillation: Associations and clinical utility in disease prediction.
Heart Rhythm. 2024 Jun;21(6):913-918. doi: 10.1016/j.hrthm.2024.02.006. Epub 2024 Feb 7.
5
Refining Prediction of Atrial Fibrillation-Related Stroke Using the P-CHADS-VASc Score.
Circulation. 2019 Jan 8;139(2):180-191. doi: 10.1161/CIRCULATIONAHA.118.035411.
6
Combining Clinical and Polygenic Risk Improves Stroke Prediction Among Individuals With Atrial Fibrillation.
Circ Genom Precis Med. 2021 Jun;14(3):e003168. doi: 10.1161/CIRCGEN.120.003168. Epub 2021 Jun 15.
8
Atrial Fibrillation Genetic Risk and Ischemic Stroke Mechanisms.
Stroke. 2017 Jun;48(6):1451-1456. doi: 10.1161/STROKEAHA.116.016198. Epub 2017 May 3.
10
Performance of Different Risk Scores for the Detection of Atrial Fibrillation Among Patients With Cryptogenic Stroke.
Stroke. 2024 Feb;55(2):454-462. doi: 10.1161/STROKEAHA.123.044961. Epub 2024 Jan 4.

引用本文的文献

3
Polygenic Risk and Cardiovascular Event Risk in Patients With Atrial Fibrillation With Low to Intermediate Stroke Risk.
J Am Heart Assoc. 2025 Apr;14(7):e037727. doi: 10.1161/JAHA.124.037727. Epub 2025 Mar 21.
4
Predicting Atrial Fibrillation After Stroke by Combining Polygenic Risk Scores and Clinical Features.
Stroke. 2025 Apr;56(4):878-886. doi: 10.1161/STROKEAHA.124.050123. Epub 2025 Jan 30.
5
Iron promotes both ferroptosis and necroptosis in the early stage of reperfusion in ischemic stroke.
Genes Dis. 2024 Mar 8;11(6):101262. doi: 10.1016/j.gendis.2024.101262. eCollection 2024 Nov.
6
Genetics and Pharmacogenetics of Atrial Fibrillation: A Mechanistic Perspective.
JACC Basic Transl Sci. 2024 Feb 28;9(7):918-934. doi: 10.1016/j.jacbts.2023.12.006. eCollection 2024 Jul.
7
Genetics in Ischemic Stroke: Current Perspectives and Future Directions.
J Cardiovasc Dev Dis. 2023 Dec 13;10(12):495. doi: 10.3390/jcdd10120495.
8
Soluble suppression of tumorigenicity 2 associated with atrial fibrillation detected after stroke: A retrospective study.
Heliyon. 2023 Nov 3;9(11):e21778. doi: 10.1016/j.heliyon.2023.e21778. eCollection 2023 Nov.
9
Genetics and the Quest to Define Sources of Cardiac Embolism.
Stroke. 2023 Jul;54(7):1786-1788. doi: 10.1161/STROKEAHA.123.043488. Epub 2023 Jun 26.

本文引用的文献

3
Evaluation of polygenic prediction methodology within a reference-standardized framework.
PLoS Genet. 2021 May 4;17(5):e1009021. doi: 10.1371/journal.pgen.1009021. eCollection 2021 May.
4
Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.
Nature. 2021 Feb;590(7845):290-299. doi: 10.1038/s41586-021-03205-y. Epub 2021 Feb 10.
5
Atrial Fibrillation Risk and Discrimination of Cardioembolic From Noncardioembolic Stroke.
Stroke. 2020 May;51(5):1396-1403. doi: 10.1161/STROKEAHA.120.028837. Epub 2020 Apr 7.
6
Development and Validation of a Prediction Model for Atrial Fibrillation Using Electronic Health Records.
JACC Clin Electrophysiol. 2019 Nov;5(11):1331-1341. doi: 10.1016/j.jacep.2019.07.016. Epub 2019 Oct 2.
7
Improved polygenic prediction by Bayesian multiple regression on summary statistics.
Nat Commun. 2019 Nov 8;10(1):5086. doi: 10.1038/s41467-019-12653-0.
8
Measuring Distribution Similarities Between Samples: A Distribution-Free Overlapping Index.
Front Psychol. 2019 May 21;10:1089. doi: 10.3389/fpsyg.2019.01089. eCollection 2019.
9
Polygenic prediction via Bayesian regression and continuous shrinkage priors.
Nat Commun. 2019 Apr 16;10(1):1776. doi: 10.1038/s41467-019-09718-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验