Suppr超能文献

针对 SARS-CoV-2 主蛋白酶的药物耐药性的系统分析。

Systematic Analyses of the Resistance Potential of Drugs Targeting SARS-CoV-2 Main Protease.

机构信息

Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605, United States.

Novartis Institute for Biomedical Research, Emeryville, California 94608, United States.

出版信息

ACS Infect Dis. 2023 Jul 14;9(7):1372-1386. doi: 10.1021/acsinfecdis.3c00125. Epub 2023 Jun 30.

Abstract

Drugs that target the main protease (M) of SARS-CoV-2 are effective therapeutics that have entered clinical use. Wide-scale use of these drugs will apply selection pressure for the evolution of resistance mutations. To understand resistance potential in M, we performed comprehensive surveys of amino acid changes that can cause resistance to nirmatrelvir (Pfizer), and ensitrelvir (Xocova) in a yeast screen. We identified 142 resistance mutations for nirmatrelvir and 177 for ensitrelvir, many of which have not been previously reported. Ninety-nine mutations caused apparent resistance to both inhibitors, suggesting likelihood for the evolution of cross-resistance. The mutation with the strongest drug resistance score against nirmatrelvir in our study (E166V) was the most impactful resistance mutation recently reported in multiple viral passaging studies. Many mutations that exhibited inhibitor-specific resistance were consistent with the distinct interactions of each inhibitor in the substrate binding site. In addition, mutants with strong drug resistance scores tended to have reduced function. Our results indicate that strong pressure from nirmatrelvir or ensitrelvir will select for multiple distinct-resistant lineages that will include both primary resistance mutations that weaken interactions with drug while decreasing enzyme function and compensatory mutations that increase enzyme activity. The comprehensive identification of resistance mutations enables the design of inhibitors with reduced potential of developing resistance and aids in the surveillance of drug resistance in circulating viral populations.

摘要

靶向 SARS-CoV-2 主要蛋白酶 (M) 的药物是有效的治疗方法,已进入临床应用。这些药物的广泛使用将对耐药突变的进化施加选择压力。为了了解 M 中的耐药潜力,我们在酵母筛选中对导致对 nirmatrelvir(辉瑞)和 ensitrelvir(Xocova)耐药的氨基酸变化进行了全面调查。我们确定了 142 个针对 nirmatrelvir 的耐药突变和 177 个针对 ensitrelvir 的耐药突变,其中许多突变以前没有报道过。99 个突变对两种抑制剂都明显产生耐药性,这表明可能会出现交叉耐药性的进化。在我们的研究中,对 nirmatrelvir 具有最强耐药评分的突变 (E166V) 是最近在多个病毒传代研究中报道的最具影响力的耐药突变。许多表现出抑制剂特异性耐药的突变与每种抑制剂在底物结合位点中的独特相互作用一致。此外,具有强耐药评分的突变体往往功能降低。我们的结果表明,来自 nirmatrelvir 或 ensitrelvir 的强烈压力将选择出多种不同的耐药谱系,其中包括削弱与药物相互作用同时降低酶活性的主要耐药突变以及增加酶活性的补偿性突变。耐药突变的全面鉴定能够设计出耐药潜力降低的抑制剂,并有助于监测循环病毒群体中的耐药性。

相似文献

1
Systematic Analyses of the Resistance Potential of Drugs Targeting SARS-CoV-2 Main Protease.
ACS Infect Dis. 2023 Jul 14;9(7):1372-1386. doi: 10.1021/acsinfecdis.3c00125. Epub 2023 Jun 30.
4
A comprehensive study of SARS-CoV-2 main protease (Mpro) inhibitor-resistant mutants selected in a VSV-based system.
PLoS Pathog. 2024 Sep 11;20(9):e1012522. doi: 10.1371/journal.ppat.1012522. eCollection 2024 Sep.
5
Contributions of Hyperactive Mutations in M from SARS-CoV-2 to Drug Resistance.
ACS Infect Dis. 2024 Apr 12;10(4):1174-1184. doi: 10.1021/acsinfecdis.3c00560. Epub 2024 Mar 12.
6
Global prevalence of SARS-CoV-2 3CL protease mutations associated with nirmatrelvir or ensitrelvir resistance.
EBioMedicine. 2023 May;91:104559. doi: 10.1016/j.ebiom.2023.104559. Epub 2023 Apr 14.
7
Molecular mechanisms of SARS-CoV-2 resistance to nirmatrelvir.
Nature. 2023 Oct;622(7982):376-382. doi: 10.1038/s41586-023-06609-0. Epub 2023 Sep 11.
8
Structural and virologic mechanism of the emergence of resistance to M inhibitors in SARS-CoV-2.
Proc Natl Acad Sci U S A. 2024 Sep 10;121(37):e2404175121. doi: 10.1073/pnas.2404175121. Epub 2024 Sep 5.
9
Evaluation of the Inhibition Potency of Nirmatrelvir against Main Protease Mutants of SARS-CoV-2 Variants.
Biochemistry. 2023 Jul 4;62(13):2055-2064. doi: 10.1021/acs.biochem.3c00075. Epub 2023 May 24.

引用本文的文献

1
Strategy to overcome a nirmatrelvir resistance mechanism in the SARS-CoV-2 nsp5 protease.
Sci Adv. 2025 Jun 6;11(23):eadv8875. doi: 10.1126/sciadv.adv8875.
2
Design, Synthesis, and Biological Evaluation of Peptidomimetic Tetrahydropyrrole Spirodihydroindolones as SARS-CoV-2 3CL Protease Inhibitors.
ACS Med Chem Lett. 2025 Apr 14;16(5):790-796. doi: 10.1021/acsmedchemlett.4c00637. eCollection 2025 May 8.
4
An Investigation of Nirmatrelvir (Paxlovid) Resistance in SARS-CoV-2 M.
ACS Bio Med Chem Au. 2024 Oct 8;4(6):280-290. doi: 10.1021/acsbiomedchemau.4c00045. eCollection 2024 Dec 18.
5
Backstage Heroes-Yeast in COVID-19 Research.
Int J Mol Sci. 2024 Nov 25;25(23):12661. doi: 10.3390/ijms252312661.
6
Revealing SARS-CoV-2 M mutation cold and hot spots: Dynamic residue network analysis meets machine learning.
Comput Struct Biotechnol J. 2024 Oct 22;23:3800-3816. doi: 10.1016/j.csbj.2024.10.031. eCollection 2024 Dec.
7
Identification of Potent, Broad-Spectrum Coronavirus Main Protease Inhibitors for Pandemic Preparedness.
J Med Chem. 2024 Oct 10;67(19):17454-17471. doi: 10.1021/acs.jmedchem.4c01404. Epub 2024 Sep 27.
8
A comprehensive study of SARS-CoV-2 main protease (Mpro) inhibitor-resistant mutants selected in a VSV-based system.
PLoS Pathog. 2024 Sep 11;20(9):e1012522. doi: 10.1371/journal.ppat.1012522. eCollection 2024 Sep.
9
Phylogenetic signatures reveal multilevel selection and fitness costs in SARS-CoV-2.
Wellcome Open Res. 2024 Jul 24;9:85. doi: 10.12688/wellcomeopenres.20704.2. eCollection 2024.

本文引用的文献

1
A yeast-based system to study SARS-CoV-2 Mpro structure and to identify nirmatrelvir resistant mutations.
PLoS Pathog. 2023 Aug 31;19(8):e1011592. doi: 10.1371/journal.ppat.1011592. eCollection 2023 Aug.
2
Naturally Occurring Mutations of SARS-CoV-2 Main Protease Confer Drug Resistance to Nirmatrelvir.
ACS Cent Sci. 2023 Jul 24;9(8):1658-1669. doi: 10.1021/acscentsci.3c00538. eCollection 2023 Aug 23.
3
Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors.
Sci Adv. 2023 Mar 29;9(13):eade8778. doi: 10.1126/sciadv.ade8778.
5
6
Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir.
Nature. 2023 Jan;613(7944):558-564. doi: 10.1038/s41586-022-05514-2. Epub 2022 Nov 9.
7
SARS-CoV-2 3CL mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376.
Sci Transl Med. 2023 Jan 11;15(678):eabq7360. doi: 10.1126/scitranslmed.abq7360.
8
Defining the substrate envelope of SARS-CoV-2 main protease to predict and avoid drug resistance.
Nat Commun. 2022 Jun 21;13(1):3556. doi: 10.1038/s41467-022-31210-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验