Suppr超能文献

孟加拉国病毒性腹泻病因临床预测模型的推导与外部验证

Derivation and External Validation of a Clinical Prediction Model for Viral Diarrhea Etiology in Bangladesh.

作者信息

Garbern Stephanie Chow, Islam Md Taufiqul, Islam Kamrul, Ahmed Sharia M, Brintz Ben J, Khan Ashraful Islam, Taniuchi Mami, Platts-Mills James A, Qadri Firdausi, Leung Daniel T

机构信息

Department of Emergency Medicine, Alpert Medical School, Brown University, Providence, Rhode Island, USA.

Infectious Diseases Division, icddr,b, Dhaka, Bangladesh.

出版信息

Open Forum Infect Dis. 2023 May 29;10(7):ofad295. doi: 10.1093/ofid/ofad295. eCollection 2023 Jul.

Abstract

BACKGROUND

Antibiotics are commonly overused for diarrheal illness in many low- and middle-income countries, partly due to a lack of diagnostics to identify viral cases, in which antibiotics are not beneficial. This study aimed to develop clinical prediction models to predict risk of viral-only diarrhea across all ages, using routinely collected demographic and clinical variables.

METHODS

We used a derivation dataset from 10 hospitals across Bangladesh and a separate validation dataset from the icddr,b Dhaka Hospital. The primary outcome was viral-only etiology determined by stool quantitative polymerase chain reaction. Multivariable logistic regression models were fit and externally validated; discrimination was quantified using area under the receiver operating characteristic curve (AUC) and calibration assessed using calibration plots.

RESULTS

Viral-only diarrhea was common in all age groups (<1 year, 41.4%; 18-55 years, 17.7%). A forward stepwise model had AUC of 0.82 (95% confidence interval [CI], .80-.84) while a simplified model with age, abdominal pain, and bloody stool had AUC of 0.81 (95% CI, .78-.82). In external validation, the models performed adequately although less robustly (AUC, 0.72 [95% CI, .70-.74]).

CONCLUSIONS

Prediction models consisting of 3 routinely collected variables can accurately predict viral-only diarrhea in patients of all ages in Bangladesh and may help support efforts to reduce inappropriate antibiotic use.

摘要

背景

在许多低收入和中等收入国家,抗生素常用于腹泻疾病的治疗,部分原因是缺乏诊断方法来识别病毒感染病例,而抗生素对这类病例并无益处。本研究旨在利用常规收集的人口统计学和临床变量,开发临床预测模型以预测各年龄段仅由病毒引起的腹泻风险。

方法

我们使用了来自孟加拉国10家医院的推导数据集以及达卡icddr,b医院的一个单独验证数据集。主要结局是通过粪便定量聚合酶链反应确定的仅由病毒引起的病因。构建多变量逻辑回归模型并进行外部验证;使用受试者工作特征曲线下面积(AUC)量化辨别力,并使用校准图评估校准情况。

结果

仅由病毒引起的腹泻在所有年龄组中都很常见(<1岁,41.4%;18 - 55岁,17.7%)。逐步向前模型的AUC为0.82(95%置信区间[CI],0.80 - 0.84),而包含年龄、腹痛和便血的简化模型的AUC为0.81(95%CI,0.78 - 0.82)。在外部验证中,模型表现尚可,但稳健性稍差(AUC,0.72[95%CI,0.70 - 0.74])。

结论

由3个常规收集变量组成的预测模型能够准确预测孟加拉国所有年龄段患者仅由病毒引起的腹泻,并可能有助于支持减少不适当抗生素使用的努力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验