Suppr超能文献

悬停时间 HAR:使用腕戴惯性传感器的篮球活动识别基准数据集。

Hang-Time HAR: A Benchmark Dataset for Basketball Activity Recognition Using Wrist-Worn Inertial Sensors.

机构信息

Ubiquitous Computing, University of Siegen, 57076 Siegen, Germany.

Computer Science, University of Colorado Boulder, Boulder, CO 80302, USA.

出版信息

Sensors (Basel). 2023 Jun 25;23(13):5879. doi: 10.3390/s23135879.

Abstract

We present a benchmark dataset for evaluating physical human activity recognition methods from wrist-worn sensors, for the specific setting of basketball training, drills, and games. Basketball activities lend themselves well for measurement by wrist-worn inertial sensors, and systems that are able to detect such sport-relevant activities could be used in applications of game analysis, guided training, and personal physical activity tracking. The dataset was recorded from two teams in separate countries (USA and Germany) with a total of 24 players who wore an inertial sensor on their wrist, during both a repetitive basketball training session and a game. Particular features of this dataset include an inherent variance through cultural differences in game rules and styles as the data was recorded in two countries, as well as different sport skill levels since the participants were heterogeneous in terms of prior basketball experience. We illustrate the dataset's features in several time-series analyses and report on a baseline classification performance study with two state-of-the-art deep learning architectures.

摘要

我们提出了一个基准数据集,用于评估来自腕戴传感器的物理人体活动识别方法,特别是针对篮球训练、练习和比赛的特定设置。篮球活动非常适合通过腕戴惯性传感器进行测量,能够检测到此类与运动相关活动的系统可应用于比赛分析、指导训练和个人体育活动跟踪等领域。该数据集是从两个国家(美国和德国)的两支队伍中记录的,共有 24 名球员在重复的篮球训练和比赛中佩戴腕部惯性传感器。该数据集的特点包括由于两国之间比赛规则和风格的文化差异而导致的固有差异,以及由于参与者在篮球经验方面存在差异,因此运动技能水平也不同。我们在几个时间序列分析中说明了数据集的特点,并报告了使用两种最先进的深度学习架构进行的基线分类性能研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7ba/10346876/88ac1e456c7e/sensors-23-05879-g0A1.jpg

相似文献

2
3
w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
Sensors (Basel). 2020 Sep 18;20(18):5356. doi: 10.3390/s20185356.
6
Comparing Weekly Training and Game Demands According to Playing Position in a Semiprofessional Basketball Team.
Int J Sports Physiol Perform. 2021 Jun 1;16(6):772-778. doi: 10.1123/ijspp.2020-0457. Epub 2021 Feb 4.
7
UMAHand: A dataset of inertial signals of typical hand activities.
Data Brief. 2024 Jul 10;55:110731. doi: 10.1016/j.dib.2024.110731. eCollection 2024 Aug.

引用本文的文献

1
Human Activity Recognition via Attention-Augmented TCN-BiGRU Fusion.
Sensors (Basel). 2025 Sep 16;25(18):5765. doi: 10.3390/s25185765.
2
A two-phase hybrid clustering framework exploring transitional activities in HAR.
Discov Artif Intell. 2025;5(1):233. doi: 10.1007/s44163-025-00503-6. Epub 2025 Aug 31.
3
Sensor-Driven Real-Time Recognition of Basketball Goal States Using IMU and Deep Learning.
Sensors (Basel). 2025 Jun 13;25(12):3709. doi: 10.3390/s25123709.
4
Action Recognition in Basketball with Inertial Measurement Unit-Supported Vest.
Sensors (Basel). 2025 Jan 19;25(2):563. doi: 10.3390/s25020563.
5
MS-TCRNet: Multi-Stage Temporal Convolutional Recurrent Networks for Action Segmentation Using Sensor-Augmented Kinematics.
Pattern Recognit. 2024 Dec;156. doi: 10.1016/j.patcog.2024.110778. Epub 2024 Jul 14.
7
Recognition of sports and daily activities through deep learning and convolutional block attention.
PeerJ Comput Sci. 2024 May 31;10:e2100. doi: 10.7717/peerj-cs.2100. eCollection 2024.
8
Robust Feature Representation Using Multi-Task Learning for Human Activity Recognition.
Sensors (Basel). 2024 Jan 21;24(2):681. doi: 10.3390/s24020681.

本文引用的文献

3
SemNet: Learning semantic attributes for human activity recognition with deep belief networks.
Front Big Data. 2022 Aug 30;5:879389. doi: 10.3389/fdata.2022.879389. eCollection 2022.
4
Motion Analysis of Football Kick Based on an IMU Sensor.
Sensors (Basel). 2022 Aug 19;22(16):6244. doi: 10.3390/s22166244.
5
Alpine Skiing Activity Recognition Using Smartphone's IMUs.
Sensors (Basel). 2022 Aug 8;22(15):5922. doi: 10.3390/s22155922.
6
MaD GUI: An Open-Source Python Package for Annotation and Analysis of Time-Series Data.
Sensors (Basel). 2022 Aug 5;22(15):5849. doi: 10.3390/s22155849.
8
Inertial Sensor Estimation of Initial and Terminal Contact during In-Field Running.
Sensors (Basel). 2022 Jun 25;22(13):4812. doi: 10.3390/s22134812.
10
SmartSwim, a Novel IMU-Based Coaching Assistance.
Sensors (Basel). 2022 Apr 27;22(9):3356. doi: 10.3390/s22093356.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验