Suppr超能文献

基于 CT 的深度学习放射组学列线图预测头颈部鳞状细胞癌中 EGFR 突变状态。

A CT-based Deep Learning Radiomics Nomogram for the Prediction of EGFR Mutation Status in Head and Neck Squamous Cell Carcinoma.

机构信息

Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao, China (Y.-m.Z.).

Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China (J.P., J.L., Z.-j.W., C.D.).

出版信息

Acad Radiol. 2024 Feb;31(2):628-638. doi: 10.1016/j.acra.2023.06.026. Epub 2023 Jul 21.

Abstract

RATIONALE AND OBJECTIVES

Accurately assessing epidermal growth factor receptor (EGFR) mutation status in head and neck squamous cell carcinoma (HNSCC) patients is crucial for prognosis and treatment selection. This study aimed to construct and validate a contrast-enhanced computed tomography (CECT)-based deep learning radiomics nomogram (DLRN) to predict EGFR mutation status of HNSCC.

MATERIALS AND METHODS

A total of 300 HNSCC patients who underwent CECT scans were enrolled in this study. Participants from two hospitals were separated into a training set (n = 200, 56 EGFR-negative and 144 EGFR-positive) from one hospital and an external test set from the other hospital (n = 100, 37 EGFR-negative and 63 EGFR-positive). The least absolute shrinkage and selection operator method was used to select the key features from CECT-based manually extracted radiomics (MER) features and features automatically extracted using a deep learning model (DL, extracted using a GoogLeNet model). The selected independent clinical factors, MER features, and DL features were then combined to construct a DLRN. The DLRN's performance was evaluated using receiver operating characteristics curves.

RESULTS

Five MER and six DL features were finally chosen. The DLRN, which includes "gender" and "necrotic areas," along with the selected features, predicted EGFR mutation status of HNSCC (EGFR-negative vs. positive) well in both the training (area under the curve [AUC], 0.901) and test (AUC, 0.875) sets.

CONCLUSION

A DLRN using CECT was built to predict EGFR mutation in HNSCC. The model showed high predictive ability and may aid in treatment selection and patient prognosis.

摘要

背景与目的

准确评估头颈部鳞状细胞癌(HNSCC)患者表皮生长因子受体(EGFR)突变状态对于预后和治疗选择至关重要。本研究旨在构建和验证一种基于增强 CT(CECT)的深度学习放射组学列线图(DLRN),以预测 HNSCC 的 EGFR 突变状态。

材料与方法

共纳入 300 例接受 CECT 扫描的 HNSCC 患者。两所医院的患者被分为一个训练集(n=200,56 例 EGFR 阴性和 144 例 EGFR 阳性)和一个来自另一所医院的外部测试集(n=100,37 例 EGFR 阴性和 63 例 EGFR 阳性)。使用最小绝对收缩和选择算子方法从基于 CECT 的手动提取放射组学(MER)特征和使用深度学习模型(使用 GoogLeNet 模型自动提取的 DL)特征中选择关键特征。然后,将选择的独立临床因素、MER 特征和 DL 特征结合起来构建 DLRN。使用受试者工作特征曲线评估 DLRN 的性能。

结果

最终选择了 5 个 MER 特征和 6 个 DL 特征。DLRN 包括“性别”和“坏死区”以及所选特征,在训练集(曲线下面积[AUC],0.901)和测试集(AUC,0.875)中均能很好地预测 HNSCC 的 EGFR 突变状态(EGFR 阴性与阳性)。

结论

构建了一种基于 CECT 的 DLRN 来预测 HNSCC 中的 EGFR 突变。该模型具有较高的预测能力,可能有助于治疗选择和患者预后。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验