Suppr超能文献

利用深度学习进行抗体可变区的结构建模——药物发现的进展与展望

Structural modeling of antibody variable regions using deep learning-progress and perspectives on drug discovery.

作者信息

Jaszczyszyn Igor, Bielska Weronika, Gawlowski Tomasz, Dudzic Pawel, Satława Tadeusz, Kończak Jarosław, Wilman Wiktoria, Janusz Bartosz, Wróbel Sonia, Chomicz Dawid, Galson Jacob D, Leem Jinwoo, Kelm Sebastian, Krawczyk Konrad

机构信息

NaturalAntibody, Kraków, Poland.

Medical University of Warsaw, Warsaw, Poland.

出版信息

Front Mol Biosci. 2023 Jul 7;10:1214424. doi: 10.3389/fmolb.2023.1214424. eCollection 2023.

Abstract

AlphaFold2 has hallmarked a generational improvement in protein structure prediction. In particular, advances in antibody structure prediction have provided a highly translatable impact on drug discovery. Though AlphaFold2 laid the groundwork for all proteins, antibody-specific applications require adjustments tailored to these molecules, which has resulted in a handful of deep learning antibody structure predictors. Herein, we review the recent advances in antibody structure prediction and relate them to their role in advancing biologics discovery.

摘要

AlphaFold2在蛋白质结构预测方面标志着一代人的进步。特别是,抗体结构预测的进展对药物发现产生了高度可转化的影响。尽管AlphaFold2为所有蛋白质奠定了基础,但针对抗体的特定应用需要针对这些分子进行调整,这导致了一些深度学习抗体结构预测器的出现。在此,我们回顾了抗体结构预测的最新进展,并阐述了它们在推进生物制剂发现中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfb7/10361724/a05b21d0784d/fmolb-10-1214424-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验