The NSF-Simons Center for Multiscale Cell Fate Research, Irvine, CA 92697, United States of America.
Department of Mathematics, University of California, Irvine, CA 92697, United States of America.
Rep Prog Phys. 2023 Aug 22;86(10). doi: 10.1088/1361-6633/acec88.
The last decade has witnessed a surge of theoretical and computational models to describe the dynamics of complex gene regulatory networks, and how these interactions can give rise to multistable and heterogeneous cell populations. As the use of theoretical modeling to describe genetic and biochemical circuits becomes more widespread, theoreticians with mathematical and physical backgrounds routinely apply concepts from statistical physics, non-linear dynamics, and network theory to biological systems. This review aims at providing a clear overview of the most important methodologies applied in the field while highlighting current and future challenges. It also includes hands-on tutorials to solve and simulate some of the archetypical biological system models used in the field. Furthermore, we provide concrete examples from the existing literature for theoreticians that wish to explore this fast-developing field. Whenever possible, we highlight the similarities and differences between biochemical and regulatory networks and 'classical' systems typically studied in non-equilibrium statistical and quantum mechanics.
过去十年见证了大量理论和计算模型的涌现,用以描述复杂基因调控网络的动态,以及这些相互作用如何产生多稳态和异质的细胞群体。随着理论建模在描述遗传和生化电路方面的应用越来越广泛,具有数学和物理背景的理论家通常将统计物理、非线性动力学和网络理论的概念应用于生物系统。本综述旨在提供该领域应用的最重要方法学的清晰概述,同时突出当前和未来的挑战。它还包括一些动手教程,以解决和模拟该领域中使用的一些典型生物系统模型。此外,我们为希望探索这一快速发展领域的理论家提供了现有文献中的具体示例。在可能的情况下,我们强调了生化和调节网络与非平衡统计和量子力学中通常研究的“经典”系统之间的相似性和差异性。