Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 113 Baohe Avenue, 518116, Shenzhen, China.
Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, China.
Eur Radiol. 2024 Jan;34(1):182-192. doi: 10.1007/s00330-023-10102-7. Epub 2023 Aug 11.
To propose a novel model-free data-driven approach based on the voxel-wise mapping of DCE-MRI time-intensity-curve (TIC) profiles for quantifying and visualizing hemodynamic heterogeneity and to validate its potential clinical applications.
From December 2018 to July 2022, 259 patients with 325 pathologically confirmed breast lesions who underwent breast DCE-MRI were retrospectively enrolled. Based on the manually segmented breast lesions, the TIC of each voxel within the 3D whole lesion was classified into 19 subtypes based on wash-in rate (nonenhanced, slow, medium, and fast), wash-out enhancement (persistent, plateau, and decline), and wash-out stability (steady and unsteady), and the composition ratio of these 19 subtypes for each lesion was calculated as a new feature set (type-19). The three-type TIC classification, semiquantitative parameters, and type-19 features were used to build machine learning models for identifying lesion malignancy and classifying histologic grades, proliferation status, and molecular subtypes.
The type-19 feature-based model significantly outperformed models based on the three-type TIC method and semiquantitative parameters both in distinguishing lesion malignancy (respectively; AUC = 0.875 vs. 0.831, p = 0.01 and 0.875vs. 0.804, p = 0.03), predicting tumor proliferation status (AUC = 0.890 vs. 0.548, p = 0.006 and 0.890 vs. 0.596, p = 0.020), but not in predicting histologic grades (p = 0.820 and 0.970).
In addition to conventional methods, the proposed computational approach provides a novel, model-free, data-driven approach to quantify and visualize hemodynamic heterogeneity.
Voxel-wise intra-lesion mapping of TIC profiles allows for visualization of hemodynamic heterogeneity and its composition ratio for differentiation of malignant and benign breast lesions.
• Voxel-wise TIC profiles were mapped, and their composition ratio was compared between various breast lesions. • The model based on the composition ratio of voxel-wise TIC profiles significantly outperformed the three-type TIC classification model and the semiquantitative parameters model in lesion malignancy differentiation and tumor proliferation status prediction in breast lesions. • This novel, data-driven approach allows the intuitive visualization and quantification of the hemodynamic heterogeneity of breast lesions.
提出一种新的无模型数据驱动方法,基于体素水平的 DCE-MRI 时间-强度曲线(TIC)轮廓映射,用于量化和可视化血流动力学异质性,并验证其潜在的临床应用。
回顾性纳入 2018 年 12 月至 2022 年 7 月期间 259 例经病理证实的 325 个乳腺病变患者,所有患者均行乳腺 DCE-MRI 检查。基于手动分割的乳腺病变,将每个病变的 3D 全病变内的每个体素的 TIC 根据流入率(未增强、缓慢、中等和快速)、流出增强(持续、平台和下降)和流出稳定性(稳定和不稳定)分类为 19 种亚型,并计算每种病变的这 19 种亚型的组成比例作为新的特征集(type-19)。使用三型 TIC 分类、半定量参数和 type-19 特征来建立用于识别病变恶性程度和分类组织学分级、增殖状态和分子亚型的机器学习模型。
基于 type-19 特征的模型在区分病变恶性程度(分别为 AUC=0.875 与 0.831,p=0.01 和 0.875 与 0.804,p=0.03)、预测肿瘤增殖状态(AUC=0.890 与 0.548,p=0.006 和 0.890 与 0.596,p=0.020)方面显著优于基于三型 TIC 方法和半定量参数的模型,但在预测组织学分级方面差异无统计学意义(p=0.820 和 0.970)。
除了传统方法外,该计算方法还提供了一种新的、无模型、数据驱动的方法来量化和可视化血流动力学异质性。
TIC 曲线的体素内映射允许对乳腺病变的血流动力学异质性及其组成比例进行可视化,以区分良恶性病变。
对 TIC 曲线进行了体素水平映射,并比较了不同乳腺病变之间的 TIC 曲线组成比例。
基于 TIC 曲线组成比例的模型在病变恶性程度鉴别和乳腺病变肿瘤增殖状态预测方面,显著优于三型 TIC 分类模型和半定量参数模型。
这种新的、数据驱动的方法允许直观地可视化和量化乳腺病变的血流动力学异质性。