Suppr超能文献

三色可见波长选择性光降解水凝胶生物材料。

Tricolor visible wavelength-selective photodegradable hydrogel biomaterials.

机构信息

Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA.

Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.

出版信息

Nat Commun. 2023 Aug 29;14(1):5250. doi: 10.1038/s41467-023-40805-w.

Abstract

Photodynamic hydrogel biomaterials have demonstrated great potential for user-triggered therapeutic release, patterned organoid development, and four-dimensional control over advanced cell fates in vitro. Current photosensitive materials are constrained by their reliance on high-energy ultraviolet light (<400 nm) that offers poor tissue penetrance and limits access to the broader visible spectrum. Here, we report a family of three photolabile material crosslinkers that respond rapidly and with unique tricolor wavelength-selectivity to low-energy visible light (400-617 nm). We show that when mixed with multifunctional poly(ethylene glycol) macromolecular precursors, ruthenium polypyridyl- and ortho-nitrobenzyl (oNB)-based crosslinkers yield cytocompatible biomaterials that can undergo spatiotemporally patterned, uniform bulk softening, and multiplexed degradation several centimeters deep through complex tissue. We demonstrate that encapsulated living cells within these photoresponsive gels show high viability and can be successfully recovered from the hydrogels following photodegradation. Moving forward, we anticipate that these advanced material platforms will enable new studies in 3D mechanobiology, controlled drug delivery, and next-generation tissue engineering applications.

摘要

光动力水凝胶生物材料在用户触发的治疗性释放、模式化类器官发育以及体外对先进细胞命运的四维控制方面显示出巨大的潜力。目前的光敏材料受到其对高能紫外光(<400nm)的依赖的限制,这种光的组织穿透性差,限制了对更广泛的可见光谱的利用。在这里,我们报告了一类三种光不稳定的材料交联剂,它们可以快速响应,并具有独特的三色波长选择性,对低能量可见光(400-617nm)做出响应。我们表明,当与多功能聚乙二醇大分子前体混合时,基于钌多吡啶和邻硝基苄基(oNB)的交联剂可以产生细胞相容性的生物材料,这些材料可以在几厘米深的复杂组织中进行时空图案化、均匀的整体软化和复分解。我们证明,这些光响应凝胶中封装的活细胞具有很高的活力,可以在光降解后从水凝胶中成功回收。展望未来,我们预计这些先进的材料平台将为 3D 机械生物学、控制药物输送和下一代组织工程应用的研究提供新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a2/10462736/d4132f65967c/41467_2023_40805_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验