Suppr超能文献

在尤卡坦半岛使用基于智能手机的眼底摄影和深度学习人工智能进行糖尿病视网膜病变筛查:一项实地研究。

Diabetic Retinopathy Screening Using Smartphone-Based Fundus Photography and Deep-Learning Artificial Intelligence in the Yucatan Peninsula: A Field Study.

作者信息

Wroblewski John J, Sanchez-Buenfil Ermilo, Inciarte Miguel, Berdia Jay, Blake Lewis, Wroblewski Simon, Patti Alexandria, Suter Gretchen, Sanborn George E

机构信息

Retina Care International, Hagerstown, MD, USA.

Cumberland Valley Retina Consultants, Hagerstown, MD, USA.

出版信息

J Diabetes Sci Technol. 2025 Mar;19(2):370-376. doi: 10.1177/19322968231194644. Epub 2023 Aug 29.

Abstract

BACKGROUND

To compare the performance of Medios (offline) and EyeArt (online) artificial intelligence (AI) algorithms for detecting diabetic retinopathy (DR) on images captured using fundus-on-smartphone photography in a remote outreach field setting.

METHODS

In June, 2019 in the Yucatan Peninsula, 248 patients, many of whom had chronic visual impairment, were screened for DR using two portable Remidio fundus-on-phone cameras, and 2130 images obtained were analyzed, retrospectively, by Medios and EyeArt. Screening performance metrics also were determined retrospectively using masked image analysis combined with clinical examination results as the reference standard.

RESULTS

A total of 129 patients were determined to have some level of DR; 119 patients had no DR. Medios was capable of evaluating every patient with a sensitivity (95% confidence intervals [CIs]) of 94% (88%-97%) and specificity of 94% (88%-98%). Owing primarily to photographer error, EyeArt evaluated 156 patients with a sensitivity of 94% (86%-98%) and specificity of 86% (77%-93%). In a head-to-head comparison of 110 patients, the sensitivities of Medios and EyeArt were 99% (93%-100%) and 95% (87%-99%). The specificities for both were 88% (73%-97%).

CONCLUSIONS

Medios and EyeArt AI algorithms demonstrated high levels of sensitivity and specificity for detecting DR when applied in this real-world field setting. Both programs should be considered in remote, large-scale DR screening campaigns where immediate results are desirable, and in the case of EyeArt, online access is possible.

摘要

背景

比较Medios(离线)和EyeArt(在线)人工智能(AI)算法在远程外展现场环境中,使用智能手机眼底摄影捕获的图像上检测糖尿病视网膜病变(DR)的性能。

方法

2019年6月在尤卡坦半岛,使用两部便携式Remidio手机眼底相机对248名患者进行DR筛查,其中许多患者患有慢性视力障碍,并对获得的2130张图像进行回顾性分析,由Medios和EyeArt进行分析。筛查性能指标也通过将掩盖图像分析与临床检查结果相结合作为参考标准进行回顾性确定。

结果

共有129名患者被确定患有某种程度的DR;119名患者没有DR。Medios能够评估每一位患者,其灵敏度(95%置信区间[CI])为94%(88%-97%),特异性为94%(88%-98%)。主要由于摄影师的误差,EyeArt评估了156名患者,其灵敏度为94%(86%-98%),特异性为86%(77%-93%)。在对110名患者的直接比较中,Medios和EyeArt的灵敏度分别为99%(93%-100%)和95%(87%-99%)。两者的特异性均为88%(73%-97%)。

结论

Medios和EyeArt AI算法在这种实际现场环境中应用时,对检测DR具有较高的灵敏度和特异性。在需要即时结果的远程大规模DR筛查活动中,以及对于EyeArt这种可以在线访问的情况,这两种程序都应予以考虑。

相似文献

3
Sensitivity and Specificity of Smartphone-Based Retinal Imaging for Diabetic Retinopathy: A Comparative Study.
Ophthalmol Retina. 2019 Feb;3(2):146-153. doi: 10.1016/j.oret.2018.09.016. Epub 2018 Sep 28.
4
Comparison of 21 artificial intelligence algorithms in automated diabetic retinopathy screening using handheld fundus camera.
Ann Med. 2024 Dec;56(1):2352018. doi: 10.1080/07853890.2024.2352018. Epub 2024 May 13.
5
Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence.
Eye (Lond). 2018 Jun;32(6):1138-1144. doi: 10.1038/s41433-018-0064-9. Epub 2018 Mar 9.
6
EyeArt artificial intelligence analysis of diabetic retinopathy in retinal screening events.
Int Ophthalmol. 2023 Dec;43(12):4851-4859. doi: 10.1007/s10792-023-02887-9. Epub 2023 Oct 17.
7
Diabetic retinopathy screening with confocal fundus camera and artificial intelligence - assisted grading.
Eur J Ophthalmol. 2025 Mar;35(2):679-688. doi: 10.1177/11206721241272229. Epub 2024 Aug 7.
9
Diabetic Retinopathy Screening Using Artificial Intelligence and Handheld Smartphone-Based Retinal Camera.
J Diabetes Sci Technol. 2022 May;16(3):716-723. doi: 10.1177/1932296820985567. Epub 2021 Jan 12.
10

引用本文的文献

1
Modern Approach to Diabetic Retinopathy Diagnostics.
Diagnostics (Basel). 2024 Aug 24;14(17):1846. doi: 10.3390/diagnostics14171846.

本文引用的文献

1
3
Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis.
Ophthalmology. 2021 Nov;128(11):1580-1591. doi: 10.1016/j.ophtha.2021.04.027. Epub 2021 May 1.
4
A Comparison of Artificial Intelligence and Human Diabetic Retinal Image Interpretation in an Urban Health System.
J Diabetes Sci Technol. 2022 Jul;16(4):1003-1007. doi: 10.1177/1932296821999370. Epub 2021 Mar 10.
5
Diabetic Retinopathy Screening Using Artificial Intelligence and Handheld Smartphone-Based Retinal Camera.
J Diabetes Sci Technol. 2022 May;16(3):716-723. doi: 10.1177/1932296820985567. Epub 2021 Jan 12.
7
Prospective evaluation of an artificial intelligence-enabled algorithm for automated diabetic retinopathy screening of 30 000 patients.
Br J Ophthalmol. 2021 May;105(5):723-728. doi: 10.1136/bjophthalmol-2020-316594. Epub 2020 Jun 30.
9
Simple, Mobile-based Artificial Intelligence Algoithm in the detection of Diabetic Retinopathy (SMART) study.
BMJ Open Diabetes Res Care. 2020 Jan;8(1). doi: 10.1136/bmjdrc-2019-000892.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验