Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA.
Neuroscience Graduate Program, Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
Nature. 2023 Sep;621(7977):206-214. doi: 10.1038/s41586-023-06470-1. Epub 2023 Aug 30.
Transient receptor potential (TRP) channels are a large, eukaryotic ion channel superfamily that control diverse physiological functions, and therefore are attractive drug targets. More than 210 structures from more than 20 different TRP channels have been determined, and all are tetramers. Despite this wealth of structures, many aspects concerning TRPV channels remain poorly understood, including the pore-dilation phenomenon, whereby prolonged activation leads to increased conductance, permeability to large ions and loss of rectification. Here, we used high-speed atomic force microscopy (HS-AFM) to analyse membrane-embedded TRPV3 at the single-molecule level and discovered a pentameric state. HS-AFM dynamic imaging revealed transience and reversibility of the pentamer in dynamic equilibrium with the canonical tetramer through membrane diffusive protomer exchange. The pentamer population increased upon diphenylboronic anhydride (DPBA) addition, an agonist that has been shown to induce TRPV3 pore dilation. On the basis of these findings, we designed a protein production and data analysis pipeline that resulted in a cryogenic-electron microscopy structure of the TRPV3 pentamer, showing an enlarged pore compared to the tetramer. The slow kinetics to enter and exit the pentameric state, the increased pentamer formation upon DPBA addition and the enlarged pore indicate that the pentamer represents the structural correlate of pore dilation. We thus show membrane diffusive protomer exchange as an additional mechanism for structural changes and conformational variability. Overall, we provide structural evidence for a non-canonical pentameric TRP-channel assembly, laying the foundation for new directions in TRP channel research.
瞬时受体电位 (TRP) 通道是一个大型的真核离子通道超家族,控制着多种生理功能,因此是有吸引力的药物靶点。已经确定了来自 20 多种不同 TRP 通道的 210 多个结构,所有这些结构都是四聚体。尽管有如此丰富的结构,但 TRPV 通道的许多方面仍然知之甚少,包括孔扩张现象,即长时间激活会导致电导增加、对大离子的通透性增加和整流丧失。在这里,我们使用高速原子力显微镜 (HS-AFM) 在单分子水平上分析了膜嵌入的 TRPV3,并发现了五聚体状态。HS-AFM 动态成像揭示了五聚体通过膜扩散单体交换与经典四聚体处于动态平衡的瞬态和可逆性。二苯基硼酸酐 (DPBA) 的加入会增加五聚体的种群,DPBA 是一种已被证明能诱导 TRPV3 孔扩张的激动剂。基于这些发现,我们设计了一个蛋白质生产和数据分析管道,得到了 TRPV3 五聚体的低温电子显微镜结构,显示与四聚体相比,孔增大。进入和退出五聚体状态的缓慢动力学、DPBA 加入后五聚体形成的增加以及孔的增大表明五聚体代表了孔扩张的结构相关物。因此,我们证明了膜扩散单体交换是结构变化和构象可变性的另一种机制。总的来说,我们提供了非经典五聚体 TRP 通道组装的结构证据,为 TRP 通道研究的新方向奠定了基础。