MRC Laboratory of Molecular Biology, Cambridge, UK.
Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Nature. 2022 Apr;604(7904):190-194. doi: 10.1038/s41586-022-04517-3. Epub 2022 Mar 30.
Type A γ-aminobutyric acid receptors (GABARs) are pentameric ligand-gated chloride channels that mediate fast inhibitory signalling in neural circuits and can be modulated by essential medicines including general anaesthetics and benzodiazepines. Human GABAR subunits are encoded by 19 paralogous genes that can, in theory, give rise to 495,235 receptor types. However, the principles that govern the formation of pentamers, the permutational landscape of receptors that may emerge from a subunit set and the effect that this has on GABAergic signalling remain largely unknown. Here we use cryogenic electron microscopy to determine the structures of extrasynaptic GABARs assembled from α4, β3 and δ subunits, and their counterparts incorporating γ2 instead of δ subunits. In each case, we identified two receptor subtypes with distinct stoichiometries and arrangements, all four differing from those previously observed for synaptic, α1-containing receptors. This, in turn, affects receptor responses to physiological and synthetic modulators by creating or eliminating ligand-binding sites at subunit interfaces. We provide structural and functional evidence that selected GABAR arrangements can act as coincidence detectors, simultaneously responding to two neurotransmitters: GABA and histamine. Using assembly simulations and single-cell RNA sequencing data, we calculated the upper bounds for receptor diversity in recombinant systems and in vivo. We propose that differential assembly is a pervasive mechanism for regulating the physiology and pharmacology of GABARs.
A型 γ-氨基丁酸受体(GABARs)是五聚体配体门控氯离子通道,可在神经回路中介导快速抑制性信号传递,并且可以被包括全身麻醉剂和苯二氮䓬类药物在内的基本药物所调节。人类 GABAR 亚基由 19 个基因的同源基因编码,理论上可以产生 495235 种受体类型。然而,调节五聚体形成的原理、从一组亚基中可能出现的受体的排列组合景观以及这对 GABA 能信号传递的影响在很大程度上仍然未知。在这里,我们使用低温电子显微镜来确定由 α4、β3 和 δ 亚基组成的细胞外 GABAR 以及包含 γ2 而不是 δ 亚基的相应受体的结构。在每种情况下,我们都鉴定出了两种具有不同的配体结合部位和排列方式的受体亚型,这四种受体与以前观察到的突触、含 α1 亚基的受体均不相同。这反过来又通过在亚基界面上创建或消除配体结合部位来影响受体对生理和合成调节剂的反应。我们提供了结构和功能证据,表明某些 GABAR 排列可以作为符合探测器,同时对两种神经递质:GABA 和组胺做出反应。通过组装模拟和单细胞 RNA 测序数据,我们计算了重组系统和体内的受体多样性的上限。我们提出,差异组装是调节 GABAR 生理学和药理学的一种普遍机制。