Suppr超能文献

差异组装使 GABA 受体结构和信号多样化。

Differential assembly diversifies GABA receptor structures and signalling.

机构信息

MRC Laboratory of Molecular Biology, Cambridge, UK.

Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Nature. 2022 Apr;604(7904):190-194. doi: 10.1038/s41586-022-04517-3. Epub 2022 Mar 30.

Abstract

Type A γ-aminobutyric acid receptors (GABARs) are pentameric ligand-gated chloride channels that mediate fast inhibitory signalling in neural circuits and can be modulated by essential medicines including general anaesthetics and benzodiazepines. Human GABAR subunits are encoded by 19 paralogous genes that can, in theory, give rise to 495,235 receptor types. However, the principles that govern the formation of pentamers, the permutational landscape of receptors that may emerge from a subunit set and the effect that this has on GABAergic signalling remain largely unknown. Here we use cryogenic electron microscopy to determine the structures of extrasynaptic GABARs assembled from α4, β3 and δ subunits, and their counterparts incorporating γ2 instead of δ subunits. In each case, we identified two receptor subtypes with distinct stoichiometries and arrangements, all four differing from those previously observed for synaptic, α1-containing receptors. This, in turn, affects receptor responses to physiological and synthetic modulators by creating or eliminating ligand-binding sites at subunit interfaces. We provide structural and functional evidence that selected GABAR arrangements can act as coincidence detectors, simultaneously responding to two neurotransmitters: GABA and histamine. Using assembly simulations and single-cell RNA sequencing data, we calculated the upper bounds for receptor diversity in recombinant systems and in vivo. We propose that differential assembly is a pervasive mechanism for regulating the physiology and pharmacology of GABARs.

摘要

A型 γ-氨基丁酸受体(GABARs)是五聚体配体门控氯离子通道,可在神经回路中介导快速抑制性信号传递,并且可以被包括全身麻醉剂和苯二氮䓬类药物在内的基本药物所调节。人类 GABAR 亚基由 19 个基因的同源基因编码,理论上可以产生 495235 种受体类型。然而,调节五聚体形成的原理、从一组亚基中可能出现的受体的排列组合景观以及这对 GABA 能信号传递的影响在很大程度上仍然未知。在这里,我们使用低温电子显微镜来确定由 α4、β3 和 δ 亚基组成的细胞外 GABAR 以及包含 γ2 而不是 δ 亚基的相应受体的结构。在每种情况下,我们都鉴定出了两种具有不同的配体结合部位和排列方式的受体亚型,这四种受体与以前观察到的突触、含 α1 亚基的受体均不相同。这反过来又通过在亚基界面上创建或消除配体结合部位来影响受体对生理和合成调节剂的反应。我们提供了结构和功能证据,表明某些 GABAR 排列可以作为符合探测器,同时对两种神经递质:GABA 和组胺做出反应。通过组装模拟和单细胞 RNA 测序数据,我们计算了重组系统和体内的受体多样性的上限。我们提出,差异组装是调节 GABAR 生理学和药理学的一种普遍机制。

相似文献

1
Differential assembly diversifies GABA receptor structures and signalling.
Nature. 2022 Apr;604(7904):190-194. doi: 10.1038/s41586-022-04517-3. Epub 2022 Mar 30.
2
Resolving native GABA receptor structures from the human brain.
Nature. 2025 Feb;638(8050):562-568. doi: 10.1038/s41586-024-08454-1. Epub 2025 Jan 22.
3
Cryo-EM structures reveal native GABA receptor assemblies and pharmacology.
Nature. 2023 Oct;622(7981):195-201. doi: 10.1038/s41586-023-06556-w. Epub 2023 Sep 20.
5
Cell surface expression of homomeric GABA receptors depends on single residues in subunit transmembrane domains.
J Biol Chem. 2018 Aug 31;293(35):13427-13439. doi: 10.1074/jbc.RA118.002792. Epub 2018 Jul 9.
6
Shared structural mechanisms of general anaesthetics and benzodiazepines.
Nature. 2020 Sep;585(7824):303-308. doi: 10.1038/s41586-020-2654-5. Epub 2020 Sep 2.
7
GABA receptors in GtoPdb v.2021.3.
IUPHAR BPS Guide Pharm CITE. 2021 Sep 2;2021(3). doi: 10.2218/gtopdb/F72/2021.3.
9
Altered cortical GABAA receptor composition, physiology, and endocytosis in a mouse model of a human genetic absence epilepsy syndrome.
J Biol Chem. 2013 Jul 19;288(29):21458-21472. doi: 10.1074/jbc.M112.444372. Epub 2013 Jun 6.
10
GABA receptor signalling mechanisms revealed by structural pharmacology.
Nature. 2019 Jan;565(7740):454-459. doi: 10.1038/s41586-018-0832-5. Epub 2019 Jan 2.

引用本文的文献

1
Targeting GABA signaling in the tumor microenvironment: implications for immune cell regulation and immunotherapy resistance.
Front Immunol. 2025 Aug 5;16:1645718. doi: 10.3389/fimmu.2025.1645718. eCollection 2025.
2
Cryo-EM structures of ρ1 GABA receptors with antagonist and agonist drugs.
Nat Commun. 2025 Aug 1;16(1):7077. doi: 10.1038/s41467-025-61932-6.
3
The potential anti-seizure effects of Astaxanthin-loaded nanostructured lipid carriers in rat model of status epilepticus.
Front Mol Neurosci. 2025 Jun 26;18:1613893. doi: 10.3389/fnmol.2025.1613893. eCollection 2025.
5
A single main-chain hydrogen bond required to keep GABA receptors closed.
Nat Commun. 2025 Jul 3;16(1):6107. doi: 10.1038/s41467-025-61447-0.
7
Neuronal ion channel modulation by Drimys winteri compounds: Opening a new chemical space to neuropharmacology.
Neural Regen Res. 2026 Apr 1;21(4):1373-1382. doi: 10.4103/NRR.NRR-D-24-01194. Epub 2025 Jun 19.
8
A large-scale curated and filterable dataset for cryo-EM foundation model pre-training.
Sci Data. 2025 Jun 7;12(1):960. doi: 10.1038/s41597-025-05179-2.
9
KCNK2-mediated regulation of MMP-2/9 by PlGF influences uterine artery function in pregnancy-induced hypertension.
BMC Pregnancy Childbirth. 2025 Jun 2;25(1):646. doi: 10.1186/s12884-025-07743-5.
10
GABAR-δ-subunit mediates increased GABAergic inhibition in cardiac DMV neurons after high-fat diet.
iScience. 2025 Mar 22;28(4):112268. doi: 10.1016/j.isci.2025.112268. eCollection 2025 Apr 18.

本文引用的文献

1
Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM.
Nat Methods. 2021 Jan;18(1):60-68. doi: 10.1038/s41592-020-01001-6. Epub 2021 Jan 6.
2
Combinatorial expression of GPCR isoforms affects signalling and drug responses.
Nature. 2020 Nov;587(7835):650-656. doi: 10.1038/s41586-020-2888-2. Epub 2020 Nov 4.
3
Two Distinct Populations of α1α6-Containing GABAA-Receptors in Rat Cerebellum.
Front Synaptic Neurosci. 2020 Oct 6;12:591129. doi: 10.3389/fnsyn.2020.591129. eCollection 2020.
4
Single-particle cryo-EM at atomic resolution.
Nature. 2020 Nov;587(7832):152-156. doi: 10.1038/s41586-020-2829-0. Epub 2020 Oct 21.
5
Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER.
J Struct Biol. 2020 Aug 1;211(2):107545. doi: 10.1016/j.jsb.2020.107545. Epub 2020 Jun 10.
6
Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in -3.1.
IUCrJ. 2020 Feb 11;7(Pt 2):253-267. doi: 10.1107/S2052252520000081. eCollection 2020 Mar 1.
7
Real-time cryo-electron microscopy data preprocessing with Warp.
Nat Methods. 2019 Nov;16(11):1146-1152. doi: 10.1038/s41592-019-0580-y. Epub 2019 Oct 7.
8
Conserved cell types with divergent features in human versus mouse cortex.
Nature. 2019 Sep;573(7772):61-68. doi: 10.1038/s41586-019-1506-7. Epub 2019 Aug 21.
9
A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis.
IUCrJ. 2019 Jan 1;6(Pt 1):5-17. doi: 10.1107/S205225251801463X.
10
GABA receptor signalling mechanisms revealed by structural pharmacology.
Nature. 2019 Jan;565(7740):454-459. doi: 10.1038/s41586-018-0832-5. Epub 2019 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验