Suppr超能文献

一种用于存在过程模型失配的微生物生物过程的混合仿真/细胞内控制器。

A hybrid in silico/in-cell controller for microbial bioprocesses with process-model mismatch.

机构信息

Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, 8916-5, Japan.

Laboratory for Synthetic Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, W5-729, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.

出版信息

Sci Rep. 2023 Sep 4;13(1):13608. doi: 10.1038/s41598-023-40469-y.

Abstract

Bioprocess optimization using mathematical models is prevalent, yet the discrepancy between model predictions and actual processes, known as process-model mismatch (PMM), remains a significant challenge. This study proposes a novel hybrid control system called the hybrid in silico/in-cell controller (HISICC) to address PMM by combining model-based optimization (in silico feedforward controller) with feedback controllers utilizing synthetic genetic circuits integrated into cells (in-cell feedback controller). We demonstrated the efficacy of HISICC using two engineered Escherichia coli strains, TA1415 and TA2445, previously developed for isopropanol (IPA) production. TA1415 contains a metabolic toggle switch (MTS) to manage the competition between cell growth and IPA production for intracellular acetyl-CoA by responding to external input of isopropyl β-D-1-thiogalactopyranoside (IPTG). TA2445, in addition to the MTS, has a genetic circuit that detects cell density to autonomously activate MTS. The combination of TA2445 with an in silico controller exemplifies HISICC implementation. We constructed mathematical models to optimize IPTG input values for both strains based on the two-compartment model and validated these models using experimental data of the IPA production process. Using these models, we evaluated the robustness of HISICC against PMM by comparing IPA yields with two strains in simulations assuming various magnitudes of PMM in cell growth rates. The results indicate that the in-cell feedback controller in TA2445 effectively compensates for PMM by modifying MTS activation timing. In conclusion, the HISICC system presents a promising solution to the PMM problem in bioprocess engineering, paving the way for more efficient and reliable optimization of microbial bioprocesses.

摘要

利用数学模型进行生物工艺优化已经很普遍,但模型预测与实际工艺之间的差异,即工艺模型失配(PMM),仍然是一个重大挑战。本研究提出了一种名为混合计算机内/细胞控制器(HISICC)的新型混合控制系统,通过将基于模型的优化(计算机内前馈控制器)与利用合成遗传回路集成到细胞中的反馈控制器(细胞内反馈控制器)相结合,来解决 PMM 问题。我们使用之前为异丙醇(IPA)生产开发的两个工程大肠杆菌菌株 TA1415 和 TA2445 来证明 HISICC 的功效。TA1415 包含代谢toggle 开关(MTS),通过对外源异丙基 β-D-1-硫代半乳糖吡喃糖苷(IPTG)的输入做出响应,来管理细胞生长和 IPA 生产之间对细胞内乙酰辅酶 A 的竞争。TA2445 除了 MTS 之外,还有一个检测细胞密度的遗传回路,可以自动激活 MTS。TA2445 与计算机内控制器的结合是 HISICC 实现的一个示例。我们构建了数学模型,根据两室模型来优化这两种菌株的 IPTG 输入值,并使用 IPA 生产过程的实验数据对这些模型进行了验证。使用这些模型,我们通过比较假设细胞生长速率存在不同程度 PMM 的情况下两种菌株的 IPA 产量,来评估 HISICC 对 PMM 的鲁棒性。结果表明,TA2445 中的细胞内反馈控制器通过修改 MTS 激活时间,有效地补偿了 PMM。总之,HISICC 系统为生物工艺工程中的 PMM 问题提供了一个有前途的解决方案,为更高效、更可靠的微生物生物工艺优化铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d7/10477343/6a63d20bfa9c/41598_2023_40469_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验