Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland.
Laboratory of Microscopic Image Analysis and Machine Learning, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary.
Cell Rep Methods. 2023 Aug 22;3(8):100565. doi: 10.1016/j.crmeth.2023.100565. eCollection 2023 Aug 28.
We present a miniaturized immunofluorescence assay (mini-IFA) for measuring antibody response in patient blood samples. The method utilizes machine learning-guided image analysis and enables simultaneous measurement of immunoglobulin M (IgM), IgA, and IgG responses against different viral antigens in an automated and high-throughput manner. The assay relies on antigens expressed through transfection, enabling use at a low biosafety level and fast adaptation to emerging pathogens. Using severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the model pathogen, we demonstrate that this method allows differentiation between vaccine-induced and infection-induced antibody responses. Additionally, we established a dedicated web page for quantitative visualization of sample-specific results and their distribution, comparing them with controls and other samples. Our results provide a proof of concept for the approach, demonstrating fast and accurate measurement of antibody responses in a research setup with prospects for clinical diagnostics.
我们提出了一种用于测量患者血液样本中抗体反应的小型化免疫荧光分析(mini-IFA)方法。该方法利用机器学习指导的图像分析,能够以自动化和高通量的方式同时测量针对不同病毒抗原的免疫球蛋白 M(IgM)、IgA 和 IgG 反应。该检测方法依赖于通过转染表达的抗原,从而能够在低生物安全水平下使用,并能快速适应新出现的病原体。我们使用严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)作为模型病原体,证明该方法能够区分疫苗诱导和感染诱导的抗体反应。此外,我们还建立了一个专门的网页,用于定量可视化样本特异性结果及其分布,并将其与对照和其他样本进行比较。我们的结果为该方法提供了概念验证,展示了在研究设置中快速准确地测量抗体反应的前景,具有临床诊断的潜力。