Suppr超能文献

神经纤毛蛋白 1 是 SARS-CoV-2 感染的宿主因子。

Neuropilin-1 is a host factor for SARS-CoV-2 infection.

机构信息

School of Biochemistry, Faculty of Life Sciences, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.

School of Cellular and Molecular Medicine, Faculty of Life Sciences, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK.

出版信息

Science. 2020 Nov 13;370(6518):861-865. doi: 10.1126/science.abd3072. Epub 2020 Oct 20.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), uses the viral spike (S) protein for host cell attachment and entry. The host protease furin cleaves the full-length precursor S glycoprotein into two associated polypeptides: S1 and S2. Cleavage of S generates a polybasic Arg-Arg-Ala-Arg carboxyl-terminal sequence on S1, which conforms to a C-end rule (CendR) motif that binds to cell surface neuropilin-1 (NRP1) and NRP2 receptors. We used x-ray crystallography and biochemical approaches to show that the S1 CendR motif directly bound NRP1. Blocking this interaction by RNA interference or selective inhibitors reduced SARS-CoV-2 entry and infectivity in cell culture. NRP1 thus serves as a host factor for SARS-CoV-2 infection and may potentially provide a therapeutic target for COVID-19.

摘要

严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)是导致 2019 年冠状病毒病(COVID-19)的病原体,它利用病毒刺突(S)蛋白附着和进入宿主细胞。宿主蛋白酶弗林(furin)将全长前体 S 糖蛋白切割成两个相关的多肽:S1 和 S2。S 的切割在 S1 上产生一个多碱性的精氨酸-精氨酸-丙氨酸-精氨酸羧基末端序列,该序列符合 C 端规则(CendR)基序,与细胞表面神经纤毛蛋白-1(NRP1)和 NRP2 受体结合。我们使用 X 射线晶体学和生化方法表明,S1 CendR 基序直接与 NRP1 结合。通过 RNA 干扰或选择性抑制剂阻断这种相互作用,可降低 SARS-CoV-2 在细胞培养中的进入和感染性。因此,NRP1 是 SARS-CoV-2 感染的宿主因子,可能为 COVID-19 提供治疗靶点。

相似文献

1
Neuropilin-1 is a host factor for SARS-CoV-2 infection.
Science. 2020 Nov 13;370(6518):861-865. doi: 10.1126/science.abd3072. Epub 2020 Oct 20.
2
Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity.
Science. 2020 Nov 13;370(6518):856-860. doi: 10.1126/science.abd2985. Epub 2020 Oct 20.
4
Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
J Virol. 2020 Oct 14;94(21). doi: 10.1128/JVI.01062-20.
5
Role of the GTNGTKR motif in the N-terminal receptor-binding domain of the SARS-CoV-2 spike protein.
Virus Res. 2020 Sep;286:198058. doi: 10.1016/j.virusres.2020.198058. Epub 2020 Jun 9.
6
Enhanced Binding of SARS-CoV-2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites.
ACS Nano. 2020 Aug 25;14(8):10616-10623. doi: 10.1021/acsnano.0c04798. Epub 2020 Aug 4.
9
A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells.
Mol Cell. 2020 May 21;78(4):779-784.e5. doi: 10.1016/j.molcel.2020.04.022. Epub 2020 May 1.
10
Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor.
Nat Commun. 2020 Sep 11;11(1):4541. doi: 10.1038/s41467-020-18319-6.

引用本文的文献

4
Neuropilin-1: A Conserved Entry Receptor for SARS-CoV-2 and a Potential Therapeutic Target.
Biomedicines. 2025 Jul 15;13(7):1730. doi: 10.3390/biomedicines13071730.
5
Serum neuropilin-1 level may predict airway remodeling based on age and smoking status in asthma.
Asia Pac Allergy. 2025 Jun;15(2):63-66. doi: 10.5415/apallergy.0000000000000192. Epub 2025 Mar 17.
6
Membrane-wide screening identifies potential tissue-specific determinants of SARS-CoV-2 tropism.
PLoS Pathog. 2025 Jul 17;21(7):e1013157. doi: 10.1371/journal.ppat.1013157. eCollection 2025 Jul.

本文引用的文献

1
nucleAIzer: A Parameter-free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer.
Cell Syst. 2020 May 20;10(5):453-458.e6. doi: 10.1016/j.cels.2020.04.003. Epub 2020 May 7.
3
Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19.
N Engl J Med. 2020 Jul 9;383(2):120-128. doi: 10.1056/NEJMoa2015432. Epub 2020 May 21.
4
Cell entry mechanisms of SARS-CoV-2.
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734. doi: 10.1073/pnas.2003138117. Epub 2020 May 6.
5
A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells.
Mol Cell. 2020 May 21;78(4):779-784.e5. doi: 10.1016/j.molcel.2020.04.022. Epub 2020 May 1.
6
Attenuated SARS-CoV-2 variants with deletions at the S1/S2 junction.
Emerg Microbes Infect. 2020 Dec;9(1):837-842. doi: 10.1080/22221751.2020.1756700.
7
Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.
Cell. 2020 Apr 16;181(2):281-292.e6. doi: 10.1016/j.cell.2020.02.058. Epub 2020 Mar 9.
8
SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.
Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.
9
An interactive web-based dashboard to track COVID-19 in real time.
Lancet Infect Dis. 2020 May;20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1. Epub 2020 Feb 19.
10
Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.
Science. 2020 Mar 13;367(6483):1260-1263. doi: 10.1126/science.abb2507. Epub 2020 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验