Suppr超能文献

构建和评估内建的甲基化敏感 SNaPshot 系统和三个分类预测模型,用于鉴定体液的组织来源。

Construction and evaluation of in-house methylation-sensitive SNaPshot system and three classification prediction models for identifying the tissue origin of body fluid.

机构信息

Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.

School of Basic Medical Sciences, Anhui Medical University, Hefei 230031, China.

出版信息

J Zhejiang Univ Sci B. 2023 Jun 27;24(9):839-852. doi: 10.1631/jzus.B2200555.

Abstract

The identification of tissue origin of body fluid can provide clues and evidence for criminal case investigations. To establish an efficient method for identifying body fluid in forensic cases, eight novel body fluid-specific DNA methylation markers were selected in this study, and a multiplex singlebase extension reaction (SNaPshot) system for these markers was constructed for the identification of five common body fluids (venous blood, saliva, menstrual blood, vaginal fluid, and semen). The results indicated that the in-house system showed good species specificity, sensitivity, and ability to identify mixed biological samples. At the same time, an artificial body fluid prediction model and two machine learning prediction models based on the support vector machine (SVM) and random forest (RF) algorithms were constructed using previous research data, and these models were validated using the detection data obtained in this study (=95). The accuracy of the prediction model based on experience was 95.79%; the prediction accuracy of the SVM prediction model was 100.00% for four kinds of body fluids except saliva (96.84%); and the prediction accuracy of the RF prediction model was 100.00% for all five kinds of body fluids. In conclusion, the in-house SNaPshot system and RF prediction model could achieve accurate tissue origin identification of body fluids.

摘要

体液来源鉴定可为刑事案件调查提供线索和证据。为建立法医案件中鉴定体液的有效方法,本研究选取了 8 种新型体液特异性 DNA 甲基化标记物,并构建了用于鉴定 5 种常见体液(静脉血、唾液、月经血、阴道液和精液)的多重单碱基延伸反应(SNaPshot)系统。结果表明,内建系统具有良好的种属特异性、灵敏度和混合生物样本识别能力。同时,利用既往研究数据构建了基于支持向量机(SVM)和随机森林(RF)算法的人工体液预测模型和 2 种机器学习预测模型,并使用本研究获得的检测数据进行验证(n=95)。基于经验的预测模型的准确率为 95.79%;SVM 预测模型对除唾液外的 4 种体液的预测准确率为 100.00%(96.84%);RF 预测模型对所有 5 种体液的预测准确率均为 100.00%。综上所述,内建 SNaPshot 系统和 RF 预测模型可实现对体液的准确组织来源鉴定。

相似文献

3
DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood.
Forensic Sci Int Genet. 2016 Sep;24:75-82. doi: 10.1016/j.fsigen.2016.06.007. Epub 2016 Jun 14.
4
Identification of Mixtures of Two Types of Body Fluids Using the Multiplex Methylation System and Random Forest Models.
Curr Med Sci. 2023 Oct;43(5):908-918. doi: 10.1007/s11596-023-2770-1. Epub 2023 Sep 13.
5
A novel multiplex assay system based on 10 methylation markers for forensic identification of body fluids.
J Forensic Sci. 2022 Jan;67(1):136-148. doi: 10.1111/1556-4029.14872. Epub 2021 Aug 25.
6
A forensic case study for body fluid identification using DNA methylation analysis.
Leg Med (Tokyo). 2021 Jul;51:101872. doi: 10.1016/j.legalmed.2021.101872. Epub 2021 Apr 1.
7
A collaborative exercise on DNA methylation-based age prediction and body fluid typing.
Forensic Sci Int Genet. 2022 Mar;57:102656. doi: 10.1016/j.fsigen.2021.102656. Epub 2021 Dec 16.
8
Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers.
Forensic Sci Int Genet. 2015 Jul;17:17-24. doi: 10.1016/j.fsigen.2015.03.002. Epub 2015 Mar 12.
9
A bacterial signature-based method for the identification of seven forensically relevant human body fluids.
Forensic Sci Int Genet. 2023 Jul;65:102865. doi: 10.1016/j.fsigen.2023.102865. Epub 2023 Mar 22.

本文引用的文献

1
DNA methylation: a historical perspective.
Trends Genet. 2022 Jul;38(7):676-707. doi: 10.1016/j.tig.2022.03.010. Epub 2022 Apr 30.
3
A collaborative exercise on DNA methylation-based age prediction and body fluid typing.
Forensic Sci Int Genet. 2022 Mar;57:102656. doi: 10.1016/j.fsigen.2021.102656. Epub 2021 Dec 16.
5
A novel multiplex assay system based on 10 methylation markers for forensic identification of body fluids.
J Forensic Sci. 2022 Jan;67(1):136-148. doi: 10.1111/1556-4029.14872. Epub 2021 Aug 25.
6
A forensic case study for body fluid identification using DNA methylation analysis.
Leg Med (Tokyo). 2021 Jul;51:101872. doi: 10.1016/j.legalmed.2021.101872. Epub 2021 Apr 1.
7
Developments in forensic DNA analysis.
Emerg Top Life Sci. 2021 Sep 24;5(3):381-393. doi: 10.1042/ETLS20200304.
8
Predicting human age by detecting DNA methylation status in hair.
Electrophoresis. 2021 Jun;42(11):1255-1261. doi: 10.1002/elps.202000349. Epub 2021 Mar 9.
9
A new method to detect methylation profiles for forensic body fluid identification combining ARMS-PCR technique and random forest model.
Forensic Sci Int Genet. 2020 Nov;49:102371. doi: 10.1016/j.fsigen.2020.102371. Epub 2020 Aug 14.
10
TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data.
Mol Plant. 2020 Aug 3;13(8):1194-1202. doi: 10.1016/j.molp.2020.06.009. Epub 2020 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验