Suppr超能文献

树突状细胞作为癌症中 T 细胞免疫的牧羊人。

Dendritic cells as shepherds of T cell immunity in cancer.

机构信息

Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne, Switzerland; AGORA Cancer Center, Swiss Cancer Center Leman, Lausanne, Switzerland; Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland.

Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.

出版信息

Immunity. 2023 Oct 10;56(10):2218-2230. doi: 10.1016/j.immuni.2023.08.014. Epub 2023 Sep 13.

Abstract

In cancer patients, dendritic cells (DCs) in tumor-draining lymph nodes can present antigens to naive T cells in ways that break immunological tolerance. The clonally expanded progeny of primed T cells are further regulated by DCs at tumor sites. Intratumoral DCs can both provide survival signals to and drive effector differentiation of incoming T cells, thereby locally enhancing antitumor immunity; however, the paucity of intratumoral DCs or their expression of immunoregulatory molecules often limits antitumor T cell responses. Here, we review the current understanding of DC-T cell interactions at both priming and effector sites of immune responses. We place emerging insights into DC functions in tumor immunity in the context of DC development, ontogeny, and functions in other settings and propose that DCs control at least two T cell-associated checkpoints of the cancer immunity cycle. Our understanding of both checkpoints has implications for the development of new approaches to cancer immunotherapy.

摘要

在癌症患者中,肿瘤引流淋巴结中的树突状细胞 (DC) 可以以打破免疫耐受的方式向幼稚 T 细胞呈递抗原。经致敏的 T 细胞克隆扩增的后代在肿瘤部位受到 DC 的进一步调节。肿瘤内 DC 既能为传入的 T 细胞提供生存信号,又能驱动效应细胞分化,从而局部增强抗肿瘤免疫;然而,肿瘤内 DC 的缺乏或其免疫调节分子的表达常常限制了抗肿瘤 T 细胞的反应。在这里,我们回顾了在免疫反应的启动和效应部位 DC-T 细胞相互作用的最新认识。我们将对肿瘤免疫中 DC 功能的新见解置于 DC 发育、个体发生以及其他环境中的功能背景下,并提出 DC 至少控制着癌症免疫周期中两个与 T 细胞相关的检查点。我们对这两个检查点的理解对癌症免疫治疗新方法的发展具有重要意义。

相似文献

1
Dendritic cells as shepherds of T cell immunity in cancer.
Immunity. 2023 Oct 10;56(10):2218-2230. doi: 10.1016/j.immuni.2023.08.014. Epub 2023 Sep 13.
2
Dendritic Cells and Cancer Immunity.
Trends Immunol. 2016 Dec;37(12):855-865. doi: 10.1016/j.it.2016.09.006. Epub 2016 Oct 25.
4
IL-33 drives the antitumor effects of dendritic cells via the induction of Tc9 cells.
Cell Mol Immunol. 2019 Jul;16(7):644-651. doi: 10.1038/s41423-018-0166-0. Epub 2018 Oct 1.
5
Beyond cDC1: Emerging Roles of DC Crosstalk in Cancer Immunity.
Front Immunol. 2019 May 9;10:1014. doi: 10.3389/fimmu.2019.01014. eCollection 2019.
6
Dendritic Cells and CD8 T Cell Immunity in Tumor Microenvironment.
Front Immunol. 2018 Dec 20;9:3059. doi: 10.3389/fimmu.2018.03059. eCollection 2018.
8
Dendritic cells, T cells and their interaction in rheumatoid arthritis.
Clin Exp Immunol. 2019 Apr;196(1):12-27. doi: 10.1111/cei.13256. Epub 2019 Jan 21.
9
The role of sialoglycans in modulating dendritic cell function and tumour immunity.
Semin Immunol. 2024 Jul-Sep;74-75:101900. doi: 10.1016/j.smim.2024.101900. Epub 2024 Oct 25.

引用本文的文献

1
Dendritic cells: understanding ontogeny, subsets, functions, and their clinical applications.
Mol Biomed. 2025 Sep 8;6(1):62. doi: 10.1186/s43556-025-00300-8.
2
Immune Responses of Dendritic Cells to Zoonotic DNA and RNA Viruses.
Vet Sci. 2025 Jul 24;12(8):692. doi: 10.3390/vetsci12080692.
7
The distinct landscape of tumor immune microenvironment in homologous recombination deficient cancers.
Biomark Res. 2025 Aug 20;13(1):108. doi: 10.1186/s40364-025-00814-x.
9
Therapeutic Colorectal Cancer Vaccines: Emerging Modalities and Translational Opportunities.
Vaccines (Basel). 2025 Jun 26;13(7):689. doi: 10.3390/vaccines13070689.
10
Oxidized phospholipid damage signals as modulators of immunity.
Open Biol. 2025 Jul;15(7):240391. doi: 10.1098/rsob.240391. Epub 2025 Jul 30.

本文引用的文献

1
Targeting innate immune pathways for cancer immunotherapy.
Immunity. 2023 Oct 10;56(10):2206-2217. doi: 10.1016/j.immuni.2023.07.018. Epub 2023 Sep 12.
2
Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks.
Immunity. 2023 Aug 8;56(8):1778-1793.e10. doi: 10.1016/j.immuni.2023.06.020. Epub 2023 Jul 17.
3
IL-6 selectively suppresses cDC1 specification via C/EBPβ.
J Exp Med. 2023 Oct 2;220(10). doi: 10.1084/jem.20221757. Epub 2023 Jul 11.
6
The NK cell receptor NKp46 recognizes ecto-calreticulin on ER-stressed cells.
Nature. 2023 Apr;616(7956):348-356. doi: 10.1038/s41586-023-05912-0. Epub 2023 Apr 5.
7
A neutrophil response linked to tumor control in immunotherapy.
Cell. 2023 Mar 30;186(7):1448-1464.e20. doi: 10.1016/j.cell.2023.02.032.
8
CCL5-producing migratory dendritic cells guide CCR5+ monocytes into the draining lymph nodes.
J Exp Med. 2023 Jun 5;220(6). doi: 10.1084/jem.20222129. Epub 2023 Mar 22.
9
cIAP1/2 Antagonism Induces Antigen-Specific T Cell-Dependent Immunity.
J Immunol. 2023 Apr 1;210(7):991-1003. doi: 10.4049/jimmunol.2200646.
10
T cell egress via lymphatic vessels is tuned by antigen encounter and limits tumor control.
Nat Immunol. 2023 Apr;24(4):664-675. doi: 10.1038/s41590-023-01443-y. Epub 2023 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验