Griesemer Marc, Navid Ali
Lawrence Livermore National Laboratory, Biosciences & Biotechnology Division, Physical & Life Sciences Directorate, Livermore, CA 94550, USA.
Microorganisms. 2023 Aug 24;11(9):2149. doi: 10.3390/microorganisms11092149.
Secondary metabolites are not essential for the growth of microorganisms, but they play a critical role in how microbes interact with their surroundings. In addition to this important ecological role, secondary metabolites also have a variety of agricultural, medicinal, and industrial uses, and thus the examination of secondary metabolism of plants and microbes is a growing scientific field. While the chemical production of certain secondary metabolites is possible, industrial-scale microbial production is a green and economically attractive alternative. This is even more true, given the advances in bioengineering that allow us to alter the workings of microbes in order to increase their production of compounds of interest. This type of engineering requires detailed knowledge of the "chassis" organism's metabolism. Since the resources and the catalytic capacity of enzymes in microbes is finite, it is important to examine the tradeoffs between various bioprocesses in an engineered system and alter its working in a manner that minimally perturbs the robustness of the system while allowing for the maximum production of a product of interest. The in silico multi-objective analysis of metabolism using genome-scale models is an ideal method for such examinations.
次生代谢产物对于微生物的生长并非必不可少,但它们在微生物与周围环境的相互作用方式中起着关键作用。除了这一重要的生态作用外,次生代谢产物还具有多种农业、医药和工业用途,因此对植物和微生物次生代谢的研究是一个不断发展的科学领域。虽然某些次生代谢产物的化学合成是可能的,但工业规模的微生物生产是一种绿色且具有经济吸引力的替代方法。考虑到生物工程的进展使我们能够改变微生物的运作方式以增加其目标化合物的产量,这一点就更加正确。这种类型的工程需要对“底盘”生物体的代谢有详细的了解。由于微生物中的资源和酶的催化能力是有限的,因此研究工程系统中各种生物过程之间的权衡,并以最小程度干扰系统稳健性同时允许最大量生产目标产物的方式改变其运作方式非常重要。使用基因组规模模型对代谢进行计算机多目标分析是进行此类研究的理想方法。