Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
Front Endocrinol (Lausanne). 2023 Sep 26;14:1266721. doi: 10.3389/fendo.2023.1266721. eCollection 2023.
There is a wealth of poorly utilized unstructured data on lymphoma metabolism, and scientometrics and visualization study could serve as a robust tool to address this issue. Hence, it was implemented.
After strict quality control, numerous data regarding the lymphoma metabolism were mined, quantified, cleaned, fused, and visualized from documents (n = 2925) limited from 2013 to 2022 using R packages, VOSviewer, and GraphPad Prism.
The linear fitting analysis generated functions predicting the annual publication number (y = 31.685x - 63628, R² = 0.93614, Prediction in 2027: 598) and citation number (y = 1363.7x - 2746019, R² = 0.94956, Prediction in 2027: 18201). In the last decade, the most academically performing author, journal, country, and affiliation were Meignan Michel (n = 35), European Journal of Nuclear Medicine and Molecular Imaging (n = 1653), USA (n = 3114), and University of Pennsylvania (n = 86), respectively. The hierarchical clustering based on unsupervised learning further divided research signatures into five clusters, including the basic study cluster (Cluster 1, Total Link Strength [TLS] = 1670, Total Occurrence [TO] = 832) and clinical study cluster (Cluster 3, TLS = 3496, TO = 1328). The timeline distribution indicated that radiomics and artificial intelligence (Cluster 4, Average Publication Year = 2019.39 ± 0.21) is a relatively new research cluster, and more endeavors deserve. Research signature burst and linear regression analysis further confirmed the findings above and revealed additional important results, such as tumor microenvironment (a = 0.6848, R² = 0.5194, p = 0.019) and immunotherapy (a = 1.036, R² = 0.6687, p = 0.004). More interestingly, by performing a "Walktrap" algorithm, the community map indicated that the "apoptosis, metabolism, chemotherapy" (Centrality = 12, Density = 6), "lymphoma, pet/ct, prognosis" (Centrality = 11, Density = 1), and "genotoxicity, mutagenicity" (Centrality = 9, Density = 4) are crucial but still under-explored, illustrating the potentiality of these research signatures in the field of the lymphoma metabolism.
This study comprehensively mines valuable information and offers significant predictions about lymphoma metabolism for its clinical and experimental practice.
淋巴瘤代谢领域存在大量未得到充分利用的非结构化数据,科学计量学和可视化研究可以作为解决这一问题的有力工具。因此,本研究实施了这一工具。
在严格的质量控制后,使用 R 包、VOSviewer 和 GraphPad Prism 从 2013 年至 2022 年期间的文献(n = 2925)中挖掘、量化、清理、融合和可视化了大量有关淋巴瘤代谢的数据。
线性拟合分析生成了预测年度出版物数量(y = 31.685x - 63628,R² = 0.93614,2027 年预测值:598)和引用数量(y = 1363.7x - 2746019,R² = 0.94956,2027 年预测值:18201)的函数。在过去十年中,学术表现最出色的作者、期刊、国家和机构分别是 Michel Meignan(n = 35)、《欧洲核医学与分子影像杂志》(n = 1653)、美国(n = 3114)和宾夕法尼亚大学(n = 86)。基于无监督学习的层次聚类进一步将研究特征分为五个聚类,包括基础研究聚类(Cluster 1,总链接强度 [TLS] = 1670,总出现次数 [TO] = 832)和临床研究聚类(Cluster 3,TLS = 3496,TO = 1328)。时间线分布表明,放射组学和人工智能(Cluster 4,平均出版年份 = 2019.39 ± 0.21)是一个相对较新的研究聚类,值得进一步研究。研究特征爆发和线性回归分析进一步证实了上述发现,并揭示了其他重要结果,例如肿瘤微环境(a = 0.6848,R² = 0.5194,p = 0.019)和免疫疗法(a = 1.036,R² = 0.6687,p = 0.004)。更有趣的是,通过执行“Walktrap”算法,社区图谱表明,“凋亡、代谢、化疗”(中心度 = 12,密度 = 6)、“淋巴瘤、pet/ct、预后”(中心度 = 11,密度 = 1)和“遗传毒性、致突变性”(中心度 = 9,密度 = 4)是至关重要但仍未得到充分探索的研究特征,这说明了这些研究特征在淋巴瘤代谢领域的潜力。
本研究全面挖掘了有价值的信息,并对淋巴瘤代谢的临床和实验实践提供了重要预测。