Suppr超能文献

ggdist:图形语法中的分布与不确定性可视化

ggdist: Visualizations of Distributions and Uncertainty in the Grammar of Graphics.

作者信息

Kay Matthew

出版信息

IEEE Trans Vis Comput Graph. 2024 Jan;30(1):414-424. doi: 10.1109/TVCG.2023.3327195. Epub 2023 Dec 25.

Abstract

The grammar of graphics is ubiquitous, providing the foundation for a variety of popular visualization tools and toolkits. Yet support for uncertainty visualization in the grammar graphics-beyond simple variations of error bars, uncertainty bands, and density plots-remains rudimentary. Research in uncertainty visualization has developed a rich variety of improved uncertainty visualizations, most of which are difficult to create in existing grammar of graphics implementations. ggdist, an extension to the popular ggplot2 grammar of graphics toolkit, is an attempt to rectify this situation. ggdist unifies a variety of uncertainty visualization types through the lens of distributional visualization, allowing functions of distributions to be mapped to directly to visual channels (aesthetics), making it straightforward to express a variety of (sometimes weird!) uncertainty visualization types. This distributional lens also offers a way to unify Bayesian and frequentist uncertainty visualization by formalizing the latter with the help of confidence distributions. In this paper, I offer a description of this uncertainty visualization paradigm and lessons learned from its development and adoption: ggdist has existed in some form for about six years (originally as part of the tidybayes R package for post-processing Bayesian models), and it has evolved substantially over that time, with several rewrites and API re-organizations as it changed in response to user feedback and expanded to cover increasing varieties of uncertainty visualization types. Ultimately, given the huge expressive power of the grammar of graphics and the popularity of tools built on it, I hope a catalog of my experience with ggdist will provide a catalyst for further improvements to formalizations and implementations of uncertainty visualization in grammar of graphics ecosystems. A free copy of this paper is available at https://osf.io/2gsz6. All supplemental materials are available at https://github.com/mjskay/ggdist-paper and are archived on Zenodo at doi:10.5281/zenodo.7770984.

摘要

图形语法无处不在,为各种流行的可视化工具和工具包奠定了基础。然而,在图形语法中对不确定性可视化的支持——除了误差线、不确定性带和密度图的简单变体之外——仍然很基础。不确定性可视化的研究已经开发出了各种各样改进的不确定性可视化方法,其中大多数在现有的图形语法实现中很难创建。ggdist是对流行的ggplot2图形语法工具包的扩展,旨在纠正这种情况。ggdist通过分布可视化的视角统一了各种不确定性可视化类型,允许将分布函数直接映射到视觉通道(美学属性),从而可以直接表达各种(有时很奇特!)不确定性可视化类型。这种分布视角还提供了一种方法,通过在置信分布的帮助下形式化频率主义不确定性可视化,来统一贝叶斯和频率主义不确定性可视化。在本文中,我描述了这种不确定性可视化范式以及从其开发和应用中吸取的经验教训:ggdist已经以某种形式存在了大约六年(最初是tidybayes R包中用于后处理贝叶斯模型的一部分),并且在这段时间里有了很大的发展,随着它根据用户反馈进行更改并扩展以涵盖越来越多的不确定性可视化类型,经历了几次重写和API重新组织。最终,鉴于图形语法的巨大表达能力以及基于它构建的工具的普及性,我希望我使用ggdist的经验目录将为进一步改进图形语法生态系统中不确定性可视化的形式化和实现提供催化剂。本文的免费副本可在https://osf.io/2gsz6获取。所有补充材料可在https://github.com/mjskay/ggdist-paper获取,并已存档于Zenodo,doi为:10.5281/zenodo.7770984。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验