Suppr超能文献

从单细胞数据中量化和纠正转录参数推断中的偏差。

Quantifying and correcting bias in transcriptional parameter inference from single-cell data.

机构信息

School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.

Biology Department, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.

出版信息

Biophys J. 2024 Jan 2;123(1):4-30. doi: 10.1016/j.bpj.2023.10.021. Epub 2023 Oct 27.

Abstract

The snapshot distribution of mRNA counts per cell can be measured using single-molecule fluorescence in situ hybridization or single-cell RNA sequencing. These distributions are often fit to the steady-state distribution of the two-state telegraph model to estimate the three transcriptional parameters for a gene of interest: mRNA synthesis rate, the switching on rate (the on state being the active transcriptional state), and the switching off rate. This model assumes no extrinsic noise, i.e., parameters do not vary between cells, and thus estimated parameters are to be understood as approximating the average values in a population. The accuracy of this approximation is currently unclear. Here, we develop a theory that explains the size and sign of estimation bias when inferring parameters from single-cell data using the standard telegraph model. We find specific bias signatures depending on the source of extrinsic noise (which parameter is most variable across cells) and the mode of transcriptional activity. If gene expression is not bursty then the population averages of all three parameters are overestimated if extrinsic noise is in the synthesis rate; underestimation occurs if extrinsic noise is in the switching on rate; both underestimation and overestimation can occur if extrinsic noise is in the switching off rate. We find that some estimated parameters tend to infinity as the size of extrinsic noise approaches a critical threshold. In contrast when gene expression is bursty, we find that in all cases the mean burst size (ratio of the synthesis rate to the switching off rate) is overestimated while the mean burst frequency (the switching on rate) is underestimated. We estimate the size of extrinsic noise from the covariance matrix of sequencing data and use this together with our theory to correct published estimates of transcriptional parameters for mammalian genes.

摘要

细胞内 mRNA 计数的瞬时分布可以使用单分子荧光原位杂交或单细胞 RNA 测序来测量。这些分布通常可以拟合到二态电报模型的稳态分布中,以估计感兴趣基因的三个转录参数:mRNA 合成率、开启率(开启状态为活跃转录状态)和关闭率。该模型假设没有外在噪声,即参数在细胞之间不变化,因此估计的参数应理解为接近群体中的平均值。目前尚不清楚这种近似的准确性。在这里,我们开发了一种理论,用于解释使用标准电报模型从单细胞数据推断参数时的估计偏差的大小和符号。我们根据外在噪声的来源(细胞间最易变的参数)和转录活性的模式找到特定的偏差特征。如果基因表达不是突发的,那么如果外在噪声在合成率中,则所有三个参数的群体平均值都会被高估;如果外在噪声在开启率中,则会被低估;如果外在噪声在关闭率中,则会出现高估和低估的情况。我们发现,当外在噪声接近临界阈值时,一些估计的参数趋于无穷大。相比之下,当基因表达是突发的时,我们发现,在所有情况下,平均爆发大小(合成率与关闭率的比值)都会被高估,而平均爆发频率(开启率)则会被低估。我们从测序数据的协方差矩阵中估计外在噪声的大小,并将其与我们的理论一起用于校正已发表的哺乳动物基因转录参数的估计值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce44/10808030/99de78112a71/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验