Suppr超能文献

酿酒酵母脯氨酸营养缺陷型的分离与初步鉴定

Isolation and preliminary characterization of Saccharomyces cerevisiae proline auxotrophs.

作者信息

Brandriss M C

出版信息

J Bacteriol. 1979 Jun;138(3):816-22. doi: 10.1128/jb.138.3.816-822.1979.

Abstract

Proline-requiring mutants of Saccharomyces cerevisiae were isolated. Each mutation is recessive and is inherited as expected for a single nuclear gene. Three complementation groups cold be defined which are believed to correspond to mutations in the three genes (pro1, pro2, and pro3) coding for the three enzymes of the pathway. Mutants defective in the pro1 and pro2 genes can be satisfied by arginine or ornithine as well as proline. This suggests that the blocks are in steps leading to glutamate semialdehyde, either in glutamyl kinase or glutamyl phosphate reductase. A pro3 mutant has been shown by enzyme assay to be deficient in delta 1-pyrroline-5-carboxylate reductase which converts pyrroline-5-carboxylate to proline. A unique feature of yeast proline auxotrophs is their failure to grown on the rich medium, yeast extract-peptone-glucose. This failure is not understood at present, although it accounts for the absence of proline auxotrophs in previous screening for amino acid auxotrophy.

摘要

分离出了酿酒酵母的脯氨酸需求型突变体。每个突变都是隐性的,并且按照单个核基因的预期方式遗传。可以定义三个互补群,据信它们分别对应于编码该途径中三种酶的三个基因(pro1、pro2和pro3)中的突变。pro1和pro2基因有缺陷的突变体可以通过精氨酸、鸟氨酸以及脯氨酸来满足需求。这表明阻断发生在通向谷氨酸半醛的步骤中,可能是在谷氨酰胺激酶或谷氨酰磷酸还原酶中。通过酶分析表明,一个pro3突变体缺乏将吡咯啉-5-羧酸转化为脯氨酸的δ1-吡咯啉-5-羧酸还原酶。酵母脯氨酸营养缺陷型的一个独特特征是它们无法在丰富培养基(酵母提取物-蛋白胨-葡萄糖)上生长。目前尚不清楚这种情况的原因,尽管这解释了在先前对氨基酸营养缺陷型的筛选中没有脯氨酸营养缺陷型的原因。

相似文献

1
Isolation and preliminary characterization of Saccharomyces cerevisiae proline auxotrophs.
J Bacteriol. 1979 Jun;138(3):816-22. doi: 10.1128/jb.138.3.816-822.1979.
2
Gene-enzyme relationships in the proline biosynthetic pathway of Saccharomyces cerevisiae.
J Bacteriol. 1987 Dec;169(12):5364-72. doi: 10.1128/jb.169.12.5364-5372.1987.
3
Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae.
J Bacteriol. 1980 Sep;143(3):1403-10. doi: 10.1128/jb.143.3.1403-1410.1980.
5
Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline.
J Bacteriol. 1979 Nov;140(2):498-503. doi: 10.1128/jb.140.2.498-503.1979.
9
Gene dosage effect of L-proline biosynthetic enzymes on L-proline accumulation and freeze tolerance in Saccharomyces cerevisiae.
Appl Environ Microbiol. 2003 Nov;69(11):6527-32. doi: 10.1128/AEM.69.11.6527-6532.2003.
10
Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae.
J Biol Chem. 2014 Oct 3;289(40):27794-806. doi: 10.1074/jbc.M114.562827. Epub 2014 Aug 11.

引用本文的文献

2
Modes-of-action of antifungal compounds: Stressors and (target-site-specific) toxins, toxicants, or toxin-stressors.
Microb Biotechnol. 2023 Jul;16(7):1438-1455. doi: 10.1111/1751-7915.14242. Epub 2023 May 16.
4
Mitochondrial NADP is essential for proline biosynthesis during cell growth.
Nat Metab. 2021 Apr;3(4):571-585. doi: 10.1038/s42255-021-00374-y. Epub 2021 Apr 8.
5
Proline Homeostasis in : How Does the Stress-Responsive Transcription Factor Msn2 Play a Role?
Front Genet. 2020 Apr 28;11:438. doi: 10.3389/fgene.2020.00438. eCollection 2020.
6
Complete Native Stable Isotope Labeling by Amino Acids of Saccharomyces cerevisiae for Global Proteomic Analysis.
Anal Chem. 2018 Sep 4;90(17):10501-10509. doi: 10.1021/acs.analchem.8b02557. Epub 2018 Aug 23.
7
Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae.
J Biol Chem. 2014 Oct 3;289(40):27794-806. doi: 10.1074/jbc.M114.562827. Epub 2014 Aug 11.
8
The modest beginnings of one genome project.
Genetics. 2013 Jun;194(2):291-9. doi: 10.1534/genetics.113.151258.
10
Improved anaerobic use of arginine by Saccharomyces cerevisiae.
Appl Environ Microbiol. 2003 Mar;69(3):1623-8. doi: 10.1128/AEM.69.3.1623-1628.2003.

本文引用的文献

1
Proline Mutants of Salmonella Typhimurium.
Genetics. 1960 Jun;45(6):755-62. doi: 10.1093/genetics/45.6.755.
2
GENETIC ALTERATION OF PYRROLINE-5-CARBOXYLATE REDUCTASE IN NEUROSPORA CRASSA.
Proc Natl Acad Sci U S A. 1959 Feb;45(2):197-204. doi: 10.1073/pnas.45.2.197.
3
ON THE GLUTAMATE-PROLINE-ORNITHINE INTERRELATION IN NEUROSPORA CRASSA.
Proc Natl Acad Sci U S A. 1954 Aug;40(8):688-94. doi: 10.1073/pnas.40.8.688.
4
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
5
Indication of a specific regulatory binding protein for ornithinetranscarbamylase in Saccharomyces cerevisiae.
Biochem Biophys Res Commun. 1965 Nov 8;21(3):226-34. doi: 10.1016/0006-291x(65)90276-7.
6
Proline synthesis in Escherichia coli. A proline-inhibitable glutamic acid kinase.
Biochim Biophys Acta. 1969 Dec 30;192(3):462-7. doi: 10.1016/0304-4165(69)90395-x.
8
Enzyme organization in the proline biosynthetic pathway of Escherichia coli.
Biochim Biophys Acta. 1974 Jun 20;354(1):75-87. doi: 10.1016/0304-4165(74)90055-5.
9
Isolation of regulatory mutants in Saccharomyces cerevisiae.
Methods Cell Biol. 1975;11:247-72. doi: 10.1016/s0091-679x(08)60327-1.
10
The use of mutants in metabolic studies.
Methods Cell Biol. 1975;11:235-45. doi: 10.1016/s0091-679x(08)60326-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验