Suppr超能文献

巯基还原应激激活低氧反应途径。

Thiol reductive stress activates the hypoxia response pathway.

机构信息

Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, India.

Department of Biophysics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.

出版信息

EMBO J. 2023 Nov 15;42(22):e114093. doi: 10.15252/embj.2023114093. Epub 2023 Oct 2.

Abstract

Owing to their capability to disrupt the oxidative protein folding environment in the endoplasmic reticulum (ER), thiol antioxidants, such as dithiothreitol (DTT), are used as ER-specific stressors. We recently showed that thiol antioxidants modulate the methionine-homocysteine cycle by upregulating an S-adenosylmethionine-dependent methyltransferase, rips-1, in Caenorhabditis elegans. However, the changes in cellular physiology induced by thiol stress that modulate the methionine-homocysteine cycle remain uncharacterized. Here, using forward genetic screens in C. elegans, we discover that thiol stress enhances rips-1 expression via the hypoxia response pathway. We demonstrate that thiol stress activates the hypoxia response pathway. The activation of the hypoxia response pathway by thiol stress is conserved in human cells. The hypoxia response pathway enhances thiol toxicity via rips-1 expression and confers protection against thiol toxicity via rips-1-independent mechanisms. Finally, we show that DTT might activate the hypoxia response pathway by producing hydrogen sulfide. Our studies reveal an intriguing interaction between thiol-mediated reductive stress and the hypoxia response pathway and challenge the current model that thiol antioxidant DTT disrupts only the ER milieu in the cell.

摘要

由于其能够破坏内质网(ER)中的氧化蛋白折叠环境,硫醇抗氧化剂,如二硫苏糖醇(DTT),被用作 ER 特异性应激物。我们最近表明,硫醇抗氧化剂通过上调 S-腺苷甲硫氨酸依赖性甲基转移酶,即 rips-1,来调节蛋氨酸-同型半胱氨酸循环。然而,硫醇应激诱导的调节蛋氨酸-同型半胱氨酸循环的细胞生理学变化仍未被描述。在这里,我们使用秀丽隐杆线虫的正向遗传筛选,发现硫醇应激通过低氧反应途径增强 rips-1 的表达。我们证明了硫醇应激会激活低氧反应途径。硫醇应激对低氧反应途径的激活在人类细胞中是保守的。低氧反应途径通过 rips-1 的表达增强硫醇毒性,并通过 rips-1 非依赖性机制提供对硫醇毒性的保护。最后,我们表明 DTT 可能通过产生硫化氢来激活低氧反应途径。我们的研究揭示了硫醇介导的还原应激与低氧反应途径之间的一种有趣的相互作用,并挑战了目前的模型,即硫醇抗氧化剂 DTT 仅破坏细胞内的 ER 环境。

相似文献

1
Thiol reductive stress activates the hypoxia response pathway.
EMBO J. 2023 Nov 15;42(22):e114093. doi: 10.15252/embj.2023114093. Epub 2023 Oct 2.
2
Dithiothreitol causes toxicity in by modulating the methionine-homocysteine cycle.
Elife. 2022 Apr 19;11:e76021. doi: 10.7554/eLife.76021.
3
Dietary-derived vitamin B12 protects Caenorhabditis elegans from thiol-reducing agents.
BMC Biol. 2022 Oct 8;20(1):228. doi: 10.1186/s12915-022-01415-y.
7
Mesencephalic astrocyte-derived neurotrophic factor is an ER-resident chaperone that protects against reductive stress in the heart.
J Biol Chem. 2020 May 29;295(22):7566-7583. doi: 10.1074/jbc.RA120.013345. Epub 2020 Apr 23.
8
Endoplasmic Reticulum Homeostasis and Stress Responses in Caenorhabditis elegans.
Prog Mol Subcell Biol. 2021;59:279-303. doi: 10.1007/978-3-030-67696-4_13.
9
HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans.
PLoS Genet. 2009 May;5(5):e1000486. doi: 10.1371/journal.pgen.1000486. Epub 2009 May 22.

本文引用的文献

1
The hypoxia response pathway promotes PEP carboxykinase and gluconeogenesis in C. elegans.
Nat Commun. 2022 Oct 18;13(1):6168. doi: 10.1038/s41467-022-33849-x.
2
Co-opted genes of algal origin protect C. elegans against cyanogenic toxins.
Curr Biol. 2022 Nov 21;32(22):4941-4948.e3. doi: 10.1016/j.cub.2022.09.041. Epub 2022 Oct 11.
3
Dietary-derived vitamin B12 protects Caenorhabditis elegans from thiol-reducing agents.
BMC Biol. 2022 Oct 8;20(1):228. doi: 10.1186/s12915-022-01415-y.
4
Dithiothreitol causes toxicity in by modulating the methionine-homocysteine cycle.
Elife. 2022 Apr 19;11:e76021. doi: 10.7554/eLife.76021.
7
Dietary thiols accelerate aging of C. elegans.
Nat Commun. 2021 Jul 15;12(1):4336. doi: 10.1038/s41467-021-24634-3.
8
Harnessing the power of genetics: fast forward genetics in Caenorhabditis elegans.
Mol Genet Genomics. 2021 Jan;296(1):1-20. doi: 10.1007/s00438-020-01721-6. Epub 2020 Sep 4.
9
Reductive Stress-Induced Mitochondrial Dysfunction and Cardiomyopathy.
Oxid Med Cell Longev. 2020 May 29;2020:5136957. doi: 10.1155/2020/5136957. eCollection 2020.
10
Reductive Stress: Neglected Science.
Antioxid Redox Signal. 2020 Jun 26. doi: 10.1089/ars.2020.8114.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验