Suppr超能文献

评估东亚人群计算多基因风险评分的最佳方法和祖源。

Evaluation of optimal methods and ancestries for calculating polygenic risk scores in East Asian population.

机构信息

Genoplan Korea, Seoul, Korea.

出版信息

Sci Rep. 2023 Nov 6;13(1):19195. doi: 10.1038/s41598-023-45859-w.

Abstract

Polygenic risk scores (PRSs) have been studied for predicting human diseases, and various methods for PRS calculation have been developed. Most PRS studies to date have focused on European ancestry, and the performance of PRS has not been sufficiently assessed in East Asia. Herein, we evaluated the predictive performance of PRSs for East Asian populations under various conditions. Simulation studies using data from the Korean cohort, Health Examinees (HEXA), demonstrated that SBayesRC and PRS-CS outperformed other PRS methods (lassosum, LDpred-funct, and PRSice) in high fixed heritability (0.3 and 0.7). In addition, we generated PRSs using real-world data from HEXA for ten diseases: asthma, breast cancer, cataract, coronary artery disease, gastric cancer, glaucoma, hyperthyroidism, hypothyroidism, osteoporosis, and type 2 diabetes (T2D). We utilized the five previous PRS methods and genome-wide association study (GWAS) data from two biobank-scale datasets [European (UK Biobank) and East Asian (BioBank Japan) ancestry]. Additionally, we employed PRS-CSx, a PRS method that combines GWAS data from both ancestries, to generate a total of 110 PRS for ten diseases. Similar to the simulation results, SBayesRC showed better predictive performance for disease risk than the other methods. Furthermore, the East Asian GWAS data outperformed those from European ancestry for breast cancer, cataract, gastric cancer, and T2D, but neither of the two GWAS ancestries showed a significant advantage on PRS performance for the remaining six diseases. Based on simulation data and real data studies, it is expected that SBayesRC will offer superior performance for East Asian populations, and PRS generated using GWAS from non-East Asian may also yield good results.

摘要

多基因风险评分(PRS)已被用于预测人类疾病,并且已经开发出了各种 PRS 计算方法。迄今为止,大多数 PRS 研究都集中在欧洲血统上,而 PRS 在东亚的表现尚未得到充分评估。在此,我们评估了 PRS 在各种条件下对东亚人群的预测性能。使用来自韩国队列 Health Examinees(HEXA)的数据进行的模拟研究表明,在高固定遗传率(0.3 和 0.7)下,SBayesRC 和 PRS-CS 优于其他 PRS 方法(lassosum、LDpred-funct 和 PRSice)。此外,我们使用 HEXA 的真实世界数据为十种疾病生成了 PRS:哮喘、乳腺癌、白内障、冠心病、胃癌、青光眼、甲状腺功能亢进症、甲状腺功能减退症、骨质疏松症和 2 型糖尿病(T2D)。我们使用了之前的五种 PRS 方法和来自两个生物库规模数据集(欧洲(英国生物库)和东亚(日本生物银行)血统)的全基因组关联研究(GWAS)数据。此外,我们还使用了 PRS-CSx,一种结合了两种血统的 GWAS 数据的 PRS 方法,为十种疾病生成了总共 110 种 PRS。与模拟结果类似,SBayesRC 对疾病风险的预测性能优于其他方法。此外,东亚的 GWAS 数据在乳腺癌、白内障、胃癌和 T2D 方面优于欧洲血统的数据,但在其余六种疾病的 PRS 性能方面,这两个 GWAS 血统都没有显示出明显的优势。基于模拟数据和真实数据研究,预计 SBayesRC 将为东亚人群提供更好的性能,并且使用非东亚 GWAS 生成的 PRS 也可能产生良好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c874/10628155/763ecc733b4d/41598_2023_45859_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验