Suppr超能文献

基于生物灵感的多孔三配位单原子 Fe 纳米酶,具有氧化酶样活性,可通过谷胱甘肽进行肿瘤可视化识别。

Bioinspired porous three-coordinated single-atom Fe nanozyme with oxidase-like activity for tumor visual identification via glutathione.

机构信息

Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xi'an, China.

Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China.

出版信息

Nat Commun. 2023 Nov 6;14(1):7127. doi: 10.1038/s41467-023-42889-w.

Abstract

Inspired by structures of natural metalloenzymes, a biomimetic synthetic strategy is developed for scalable synthesis of porous Fe-N single atom nanozymes (pFeSAN) using hemoglobin as Fe-source and template. pFeSAN delivers 3.3- and 8791-fold higher oxidase-like activity than Fe-N and FeO nanozymes. The high catalytic performance is attributed to (1) the suppressed aggregation of atomically dispersed Fe; (2) facilitated mass transfer and maximized exposure of active sites for the created mesopores by thermal removal of hemoglobin (2 ~ 3 nm); and (3) unique electronic configuration of Fe-N for the oxygen-to-water oxidation pathway (analogy with natural cytochrome c oxidase). The pFeSAN is successfully demonstrated for the rapid colorimetric detection of glutathione with a low limit of detection (2.4 nM) and wide range (50 nM-1 mM), and further developed as a real-time, facile, rapid (~6 min) and precise visualization analysis methodology of tumors via glutathione level, showing its potentials for diagnostic and clinic applications.

摘要

受天然金属酶结构的启发,开发了一种仿生合成策略,使用血红蛋白作为铁源和模板,可大规模合成多孔 Fe-N 单原子纳米酶(pFeSAN)。pFeSAN 的氧化酶样活性比 Fe-N 和 FeO 纳米酶分别高 3.3 倍和 8791 倍。这种高催化性能归因于:(1)原子分散的 Fe 的聚集被抑制;(2)通过热去除血红蛋白(23nm)产生的介孔促进了传质和活性位点的最大暴露;(3)Fe-N 的独特电子结构有利于氧到水的氧化途径(类似于天然细胞色素 c 氧化酶)。pFeSAN 成功用于谷胱甘肽的快速比色检测,检测限低(2.4nM),范围宽(50nM-1mM),并进一步发展为通过谷胱甘肽水平实时、简便、快速(6min)和精确可视化分析肿瘤的方法,显示了其在诊断和临床应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97c2/10638392/8054518a2e3e/41467_2023_42889_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验