Suppr超能文献

基于生成对抗网络的主动脉和颈动脉非对比 CT 血管造影

Generative Adversarial Network-based Noncontrast CT Angiography for Aorta and Carotid Arteries.

机构信息

From the Department of Radiology, Chinese PLA General Hospital, 28 Fuxing Rd, Haidian District, Beijing 100853, China (J. Lyu, Y.X., Q.D., C.D., X.W., X.X., D.Z., J. Lin, C. Luo, X.M., X.B., J. Hu, C. Li, J. Huang, X.L.); College of Medical Technology, School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China (Y.F., M.Y., X.L.); Department of Radiology, Brain Hospital of Hunan Province, Changsha, China (W.Z.); Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China (Y.Z.); and Department of Radiology, Xiamen Humanity Hospital, Xiamen, China (S.S.).

出版信息

Radiology. 2023 Nov;309(2):e230681. doi: 10.1148/radiol.230681.

Abstract

Background Iodinated contrast agents (ICAs), which are widely used in CT angiography (CTA), may cause adverse effects in humans, and their use is time-consuming and costly. Purpose To develop an ICA-free deep learning imaging model for synthesizing CTA-like images and to assess quantitative and qualitative image quality as well as the diagnostic accuracy of synthetic CTA (Syn-CTA) images. Materials and Methods A generative adversarial network (GAN)-based CTA imaging model was trained, validated, and tested on retrospectively collected pairs of noncontrast CT and CTA images of the neck and abdomen from January 2017 to June 2022, and further validated on an external data set. Syn-CTA image quality was evaluated using quantitative metrics. In addition, two senior radiologists scored the visual quality on a three-point scale (3 = good) and determined the vascular diagnosis. The validity of Syn-CTA images was evaluated by comparing the visual quality scores and diagnostic accuracy of aortic and carotid artery disease between Syn-CTA and real CTA scans. Results CT scans from 1749 patients (median age, 60 years [IQR, 50-68 years]; 1057 male patients) were included in the internal data set: 1137 for training, 400 for validation, and 212 for testing. The external validation set comprised CT scans from 42 patients (median age, 67 years [IQR, 59-74 years]; 37 male patients). Syn-CTA images had high similarity to real CTA images (normalized mean absolute error, 0.011 and 0.013 for internal and external test set, respectively; peak signal-to-noise ratio, 32.07 dB and 31.58 dB; structural similarity, 0.919 and 0.906). The visual quality of Syn-CTA and real CTA images was comparable (internal test set, = .35; external validation set, > .99). Syn-CTA showed reasonable to good diagnostic accuracy for vascular diseases (internal test set: accuracy = 94%, macro F1 score = 91%; external validation set: accuracy = 86%, macro F1 score = 83%). Conclusion A GAN-based model that synthesizes neck and abdominal CTA-like images without the use of ICAs shows promise in vascular diagnosis compared with real CTA images. Clinical trial registration no. NCT05471869 © RSNA, 2023 . See also the editorial by Zhang and Turkbey in this issue.

摘要

背景 碘造影剂(ICAs)广泛应用于 CT 血管造影(CTA),可能对人体产生不良反应,且其使用既耗时又昂贵。目的 开发一种无需 ICA 的深度学习成像模型,用于合成 CTA 样图像,并评估合成 CTA(Syn-CTA)图像的定量和定性图像质量以及诊断准确性。材料与方法 本研究回顾性地收集了 2017 年 1 月至 2022 年 6 月期间颈部和腹部非对比 CT 和 CTA 图像的对,基于生成对抗网络(GAN)的 CTA 成像模型进行了训练、验证和测试,并在外部数据集上进一步进行了验证。使用定量指标评估 Syn-CTA 图像质量。此外,两位资深放射科医生对视觉质量进行了三分制评分(3 分=良好),并确定了血管诊断。通过比较 Syn-CTA 和真实 CTA 扫描的主动脉和颈动脉疾病的视觉质量评分和诊断准确性,评估 Syn-CTA 图像的有效性。结果 纳入了来自 1749 名患者(中位年龄,60 岁[IQR,50-68 岁];1057 名男性患者)的 CT 扫描,用于内部数据集的训练(1137 例)、验证(400 例)和测试(212 例)。外部验证集包括来自 42 名患者(中位年龄,67 岁[IQR,59-74 岁];37 名男性患者)的 CT 扫描。Syn-CTA 图像与真实 CTA 图像具有高度相似性(内部测试集的归一化平均绝对误差分别为 0.011 和 0.013;峰值信噪比分别为 32.07 dB 和 31.58 dB;结构相似性分别为 0.919 和 0.906)。Syn-CTA 和真实 CTA 图像的视觉质量相当(内部测试集, =.35;外部验证集, >.99)。Syn-CTA 对血管疾病具有合理到良好的诊断准确性(内部测试集:准确性=94%,宏观 F1 评分=91%;外部验证集:准确性=86%,宏观 F1 评分=83%)。结论 与真实 CTA 图像相比,一种基于 GAN 的无需使用 ICA 即可合成颈部和腹部 CTA 样图像的模型在血管诊断方面具有潜力。临床试验注册号 NCT05471869 ® RSNA,2023 。另见本期张中和 Turkbey 的社论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验