Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona.
Department of Radiation Oncology, City of Hope Comprehensive Cancer Center, Duarte, California.
Int J Radiat Oncol Biol Phys. 2024 May 1;119(1):261-280. doi: 10.1016/j.ijrobp.2023.10.033. Epub 2023 Nov 14.
Deep learning neural networks (DLNN) in Artificial intelligence (AI) have been extensively explored for automatic segmentation in radiotherapy (RT). In contrast to traditional model-based methods, data-driven AI-based models for auto-segmentation have shown high accuracy in early studies in research settings and controlled environment (single institution). Vendor-provided commercial AI models are made available as part of the integrated treatment planning system (TPS) or as a stand-alone tool that provides streamlined workflow interacting with the main TPS. These commercial tools have drawn clinics' attention thanks to their significant benefit in reducing the workload from manual contouring and shortening the duration of treatment planning. However, challenges occur when applying these commercial AI-based segmentation models to diverse clinical scenarios, particularly in uncontrolled environments. Contouring nomenclature and guideline standardization has been the main task undertaken by the NRG Oncology. AI auto-segmentation holds the potential clinical trial participants to reduce interobserver variations, nomenclature non-compliance, and contouring guideline deviations. Meanwhile, trial reviewers could use AI tools to verify contour accuracy and compliance of those submitted datasets. In recognizing the growing clinical utilization and potential of these commercial AI auto-segmentation tools, NRG Oncology has formed a working group to evaluate the clinical utilization and potential of commercial AI auto-segmentation tools. The group will assess in-house and commercially available AI models, evaluation metrics, clinical challenges, and limitations, as well as future developments in addressing these challenges. General recommendations are made in terms of the implementation of these commercial AI models, as well as precautions in recognizing the challenges and limitations.
人工智能中的深度学习神经网络 (DLNN) 在放射治疗 (RT) 自动分割中得到了广泛探索。与传统基于模型的方法相比,用于自动分割的基于数据驱动的人工智能模型在研究环境和受控环境 (单一机构) 中的早期研究中显示出了很高的准确性。供应商提供的商业人工智能模型可作为集成治疗计划系统 (TPS) 的一部分或作为独立工具使用,这些工具提供了与主 TPS 交互的简化工作流程。这些商业工具因其在减少手动轮廓绘制工作量和缩短治疗计划时间方面的显著优势,引起了临床医生的关注。然而,当将这些基于商业人工智能的分割模型应用于各种临床情况时,特别是在不受控制的环境中,会出现挑战。NRG 肿瘤学的主要任务是轮廓命名和指南标准化。人工智能自动分割有可能减少观察者间的变异、命名不规范和轮廓指南偏差。同时,试验审查员可以使用人工智能工具来验证提交数据集的轮廓准确性和一致性。在认识到这些商业人工智能自动分割工具的临床应用和潜力不断增长的情况下,NRG 肿瘤学成立了一个工作组来评估商业人工智能自动分割工具的临床应用和潜力。该小组将评估内部和商业上可用的人工智能模型、评估指标、临床挑战和局限性,以及解决这些挑战的未来发展。针对这些商业人工智能模型的实施提出了一般建议,并在认识到挑战和局限性方面提出了注意事项。