Suppr超能文献

睡眠特征与生物衰老风险的关联:基于 157227 例病例和 179332 例对照的孟德尔随机化研究。

Association between sleep traits and biological aging risk: a Mendelian randomization study based on 157 227 cases and 179 332 controls.

机构信息

Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.

Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Genomic Science and Precision Medicine Institute, Gusu School, Nanjing Medical University, Nanjing 211166, China.

出版信息

Sleep. 2024 Mar 11;47(3). doi: 10.1093/sleep/zsad299.

Abstract

STUDY OBJECTIVES

To investigate whether sleep traits are associated with the risk of biological aging using a case-control design with Mendelian randomization (MR) analyses.

METHODS

We studied 336 559 participants in the UK Biobank cohort, including 157 227 cases of accelerated biological aging and 179 332 controls. PhenoAge, derived from clinical traits, estimated biological ages, and the discrepancies from chronological age were defined as age accelerations (PhenoAgeAccel). Sleep behaviors were assessed with a standardized questionnaire. propensity score matching matched control participants to age-accelerated participants, and a conditional multivariable logistic regression model estimated odds ratio (OR) and 95% confidence intervals (95% CI). Causal relationships between sleep traits and PhenoAgeAccel were explored using linear and nonlinear MR methods.

RESULTS

A U-shaped association was found between sleep duration and PhenoAgeAccel risk. Short sleepers had a 7% higher risk (OR = 1.07; 95% CI: 1.03 to 1.11), while long sleepers had an 18% higher risk (OR = 1.18; 95% CI: 1.15 to 1.22), compared to normal sleepers (6-8 hours/day). Evening chronotype was linked to higher PhenoAgeAccel risk than morning chronotype (OR = 1.14; 95% CI: 1.10 to 1.18), while no significant associations were found for insomnia or snoring. Morning chronotype had a protective effect on PhenoAgeAccel risk (OR = 0.87, 95% CI: 0.79 to 0.95) per linear MR analysis. Genetically predicted sleep duration showed a U-shaped relationship with PhenoAgeAccel, suggesting a nonlinear association (pnonlinear < 0.001).

CONCLUSIONS

The study suggests that improving sleep can slow biological aging, highlighting the importance of optimizing sleep as an intervention to mitigate aging's adverse effects.

摘要

研究目的

采用孟德尔随机化(MR)分析的病例对照设计,研究睡眠特征是否与生物衰老风险相关。

方法

我们对英国生物库队列中的 336559 名参与者进行了研究,其中包括 157227 例加速生物衰老病例和 179332 例对照。基于临床特征的 PhenoAge 估计了生物年龄,并定义与实际年龄的差异为年龄加速(PhenoAgeAccel)。使用标准化问卷评估睡眠行为。倾向评分匹配将对照参与者与年龄加速的参与者匹配,并使用条件多变量逻辑回归模型估计比值比(OR)和 95%置信区间(95%CI)。使用线性和非线性 MR 方法探索睡眠特征与 PhenoAgeAccel 之间的因果关系。

结果

发现睡眠时间与 PhenoAgeAccel 风险之间存在 U 型关联。与正常睡眠者(6-8 小时/天)相比,短睡眠者的风险增加 7%(OR=1.07;95%CI:1.03 至 1.11),长睡眠者的风险增加 18%(OR=1.18;95%CI:1.15 至 1.22)。晚型生物钟与更高的 PhenoAgeAccel 风险相关,而早型生物钟则没有显著关联(OR=1.14;95%CI:1.10 至 1.18),而失眠或打鼾与 PhenoAgeAccel 风险无显著关联。通过线性 MR 分析,晨型生物钟对 PhenoAgeAccel 风险具有保护作用(OR=0.87,95%CI:0.79 至 0.95)。遗传预测的睡眠时间与 PhenoAgeAccel 呈 U 型关系,提示存在非线性关联(pnonlinear<0.001)。

结论

该研究表明,改善睡眠可以减缓生物衰老,强调了优化睡眠作为减轻衰老不良影响的干预措施的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验