Suppr超能文献

基于内质网应激基因构建胃腺癌预后风险模型。

Construction of a prognostic risk model for Stomach adenocarcinoma based on endoplasmic reticulum stress genes.

机构信息

Department of General Surgery, Zigong Fourth People's Hospital, No. 19 Tanmulin Street, Ziliujing District, 643000, Zigong City, Sichuan Province, China.

出版信息

Wien Klin Wochenschr. 2024 Jun;136(11-12):319-330. doi: 10.1007/s00508-023-02306-0. Epub 2023 Nov 22.

Abstract

OBJECTIVE

Stomach adenocarcinoma (STAD) is caused by malignant transformation of gastric glandular cells and is characterized by a high incidence rate and a poor prognosis. This study was designed to establish a prognostic risk model for STAD according to endoplasmic reticulum (ER) stress feature genes as cancer cells are susceptible to ER stress.

METHODS

The TCGA-STAD dataset was downloaded to screen differentially expressed genes (DEGs). By intersecting DEGs with ER stress genes retrieved from GeneCards, ER stress-related DEGs in STAD were obtained. Kmeans cluster analysis of STAD subtypes and Single sample gene set enrichment analysis (ssGSEA) analysis of immune infiltration were performed. Cox regression analysis was utilized to construct a risk prognostic model. Samples were split into high-risk and low-risk groups according to the median risk score. Survival analysis and Receiver Operating Characteristic (ROC) curves were conducted to assess the validity of the model. Gene set enrichment analysis (GSEA) was performed to investigate differential pathways in the two risk groups. Cox analysis was performed to verify the independence of the risk model, and a nomogram was generated.

RESULTS

A total of 162 ER stress-related DEGs in STAD were identified by bioinformatics analysis. Kmeans cluster analysis showed that STAD was divided into 3 subgroups. The ssGSEA showed that the levels of immune infiltration in subgroups 2 and 3 were significantly higher than subgroup 1. With 12 prognostic genes (MATN3, ATP2A1, NOX4, AQP11, HP, CAV1, STARD3, FKBP10, EGF, F2, SERPINE1, CNGA3) selected from ER stress-related DEGs using Cox regression analysis, we then constructed a prognostic model. Kaplan-Meier (K‑M) survival curves and ROC curves showed good prediction performance of the model. Significant enrichment of genes in the high-risk group was found in extracellular matrix (ECM) receptor interaction. Cox regression analysis combined with clinical factors showed that the risk model could be used as an independent prognostic factor. The prediction correction curve showed that the good prediction ability of the nomogram.

CONCLUSION

The STAD could be divided into three subgroups, and the 12-gene model constructed by ER stress signatures had a good prognostic performance for STAD patients.

摘要

目的

胃腺癌(STAD)是由胃腺细胞恶性转化引起的,其发病率和预后均较差。本研究旨在根据内质网(ER)应激特征基因建立 STAD 的预后风险模型,因为癌细胞易受 ER 应激影响。

方法

下载 TCGA-STAD 数据集筛选差异表达基因(DEGs)。通过将 DEGs 与 GeneCards 中检索到的 ER 应激基因进行交集,获得 STAD 中的 ER 应激相关 DEGs。对 STAD 亚型进行 Kmeans 聚类分析和单样本基因集富集分析(ssGSEA)分析免疫浸润。利用 Cox 回归分析构建风险预后模型。根据中位风险评分将样本分为高风险和低风险组。进行生存分析和Receiver Operating Characteristic(ROC)曲线评估模型的有效性。进行基因集富集分析(GSEA)以研究两组间差异通路。进行 Cox 分析验证风险模型的独立性,并生成列线图。

结果

通过生物信息学分析共鉴定出 162 个 STAD 中与 ER 应激相关的 DEGs。Kmeans 聚类分析显示 STAD 分为 3 个亚组。ssGSEA 显示亚组 2 和 3 的免疫浸润水平明显高于亚组 1。通过 Cox 回归分析从 ER 应激相关 DEGs 中选择 12 个预后基因(MATN3、ATP2A1、NOX4、AQP11、HP、CAV1、STARD3、FKBP10、EGF、F2、SERPINE1、CNGA3),构建预后模型。Kaplan-Meier(K-M)生存曲线和 ROC 曲线显示模型具有良好的预测性能。在高风险组中发现基因的显著富集在外泌体基质(ECM)受体相互作用中。Cox 回归分析结合临床因素表明,该风险模型可作为独立的预后因素。预测校正曲线显示列线图具有良好的预测能力。

结论

STAD 可分为 3 个亚组,由 ER 应激特征构建的 12 基因模型对 STAD 患者具有良好的预后性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验