Suppr超能文献

从头发现半胱氨酸框架,用于开发用于配体发现的多环肽文库。

De Novo Discovery of Cysteine Frameworks for Developing Multicyclic Peptide Libraries for Ligand Discovery.

机构信息

The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

出版信息

J Am Chem Soc. 2023 Dec 27;145(51):28264-28275. doi: 10.1021/jacs.3c11856. Epub 2023 Dec 13.

Abstract

Conserved cysteine frameworks are essential components of disulfide-rich peptides (DRPs), which dominantly define the structural diversity of both naturally occurring and de novo-designed DRPs. However, there are only very limited numbers of conserved cysteine frameworks, and general methods enabling de novo discovery of cysteine frameworks with robust foldability are still not available. Here, we devised a "touchstone"-based strategy that relies on chasing oxidative foldability between two individual disulfide-rich folds on the phage surface to discover new cysteine frameworks from random sequences. Unique cysteine frameworks with a high degree of compatibility with phage display systems and broad sequence tolerance were successfully identified, which were subsequently exploited for the development of multicyclic DRP libraries, enabling the rapid discovery of new peptide ligands with low-nanomolar and picomolar binding affinity. This study provides an unprecedented method for exploring and exploiting the sequence and structure space of DRPs that is not readily accessible by existing strategies, holding the potential to revolutionize the study of DRPs and significantly advance the design and discovery of multicyclic peptide ligands and drugs.

摘要

保守半胱氨酸框架是富含二硫键的肽(DRP)的基本组成部分,这些肽主要定义了天然和从头设计的 DRP 的结构多样性。然而,保守半胱氨酸框架的数量非常有限,并且仍然没有通用的方法可以从头发现具有稳健折叠能力的半胱氨酸框架。在这里,我们设计了一种基于“试金石”的策略,该策略依赖于在噬菌体表面的两个单独的富含二硫键的折叠之间追逐氧化折叠性,从而从随机序列中发现新的半胱氨酸框架。成功鉴定出了与噬菌体展示系统高度兼容且具有广泛序列耐受性的独特半胱氨酸框架,随后这些框架被用于开发多环 DRP 文库,从而能够快速发现具有低纳摩尔和皮摩尔结合亲和力的新型肽配体。这项研究提供了一种前所未有的方法,可以探索和利用现有的策略不易获得的 DRP 的序列和结构空间,有可能彻底改变 DRP 的研究,并显著推进多环肽配体和药物的设计和发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验