Alshahrani Mohammed Merae
Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia.
Saudi Pharm J. 2024 Jan;32(1):101914. doi: 10.1016/j.jsps.2023.101914. Epub 2023 Dec 10.
SARS-CoV-2 is accountable for severe social and economic disruption around the world causing COVID-19. Non-structural protein-15 (NSP15) possesses a domain that is vital to the viral life cycle and is known as uridylate-specific endoribonuclease (EndoU). This domain binds to the uridine 5'-monophosphate (U5P) so that the protein may carry out its native activity. It is considered a vital drug target to inhibit the growth of the virus. Thus, in this current study, ML-based QSAR and virtual screening of U5P analogues targeting Nsp15 were performed to identify potential molecules against SARS-CoV-2. Screening of 816 unique U5P analogues using ML-based QSAR identified 397 compounds ranked on their predicted bioactivity (pIC50). Further, molecular docking and hydrogen bond interaction analysis resulted in the selection of the top three compounds (, , and ). Molecular dynamics simulation of the most promising compounds showed that two molecules and acted as potential binders of Nsp15. The compound was able to inhibit nsp15 activity as it was successfully bound to the active site of the nsp15 protein. This was achieved by the formation of relevant contacts with enzymatically critical amino acid residues (His235, His250, and Lys290). Principal component analysis and free energy landscape studies showed stable complex formation while MM/GBSA calculation showed lower binding energies for (ΔG = -29.4 kcal/mol) and (ΔG = -39.4 kcal/mol) compared to the control U5P (ΔG = -18.8 kcal/mol). This study aimed to identify analogues of U5P inhibiting the NSP15 function that potentially could be used for treating COVID-19.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)导致了全球范围内严重的社会和经济混乱,引发了2019冠状病毒病(COVID-19)。非结构蛋白15(NSP15)拥有一个对病毒生命周期至关重要的结构域,被称为尿苷酸特异性内切核糖核酸酶(EndoU)。该结构域与5'-单磷酸尿苷(U5P)结合,使该蛋白能够发挥其天然活性。它被认为是抑制病毒生长的重要药物靶点。因此,在本研究中,进行了基于机器学习的定量构效关系(QSAR)和针对Nsp15的U5P类似物的虚拟筛选,以鉴定针对SARS-CoV-2的潜在分子。使用基于机器学习的QSAR对816种独特的U5P类似物进行筛选,确定了397种根据其预测生物活性(pIC50)排名的化合物。此外,分子对接和氢键相互作用分析导致选择了前三种化合物(、和)。对最有前景的化合物进行分子动力学模拟表明,两种分子和作为Nsp15的潜在结合剂。该化合物能够抑制nsp15活性,因为它成功地结合到了nsp15蛋白的活性位点。这是通过与酶促关键氨基酸残基(His235、His250和Lys290)形成相关接触来实现的。主成分分析和自由能景观研究表明形成了稳定的复合物,而与对照U5P(ΔG = -18.8 kcal/mol)相比,MM/GBSA计算显示和的结合能更低(ΔG = -29.4 kcal/mol和ΔG = -(此处原文缺失数值)kcal/mol)。本研究旨在鉴定抑制NSP15功能的U5P类似物,这些类似物可能用于治疗COVID-19。 (注:原文中部分化学式或化合物名称处有缺失信息,已按原样翻译)