Suppr超能文献

FlhF 通过 HsbR 影响 WspR 的亚细胞聚集。

FlhF affects the subcellular clustering of WspR through HsbR in .

机构信息

Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China.

出版信息

Appl Environ Microbiol. 2024 Jan 24;90(1):e0154823. doi: 10.1128/aem.01548-23. Epub 2023 Dec 19.

Abstract

In bacteria, the second messenger cyclic di-GMP (c-di-GMP) is synthesized and degraded by multiple diguanylate cyclases (DGCs) and phosphodiesterases. A high level of c-di-GMP induces biofilm formation and represses motility. WspR, a hybrid response regulator DGC, produces c-di-GMP when it is phosphorylated. FlhF, a signal recognition particle-type GTPase, is initially localized to the cell poles and is indispensable for polar flagellar localization in . In this study, we report that deletion of affected biofilm formation and the c-di-GMP level in . Phenotypic analysis of a knockout mutant revealed increased biofilm formation, wrinkled colonies on Congo red agar, and an elevated c-di-GMP level compared to the wild-type strain, PAO1. Yeast and bacterial two-hybrid systems showed that FlhF binds to the response regulator HsbR, and HsbR binds to WspR. Deletion of or in the Δ background abolished the phenotype of Δ. In addition, confocal microscopy demonstrated that WspR-GFP was distributed throughout the cytoplasm and formed a visible cluster at one cell pole in PAO1 and Δ, but it was mainly distributed as visible clusters at the lateral side of the periplasm and with visible clusters at both cell poles in Δ. These findings suggest that FlhF influences the subcellular cluster and localization of WspR and negatively modulates WspR DGC activity in a manner dependent on HsbR. Together, our findings demonstrate a novel mechanism for FlhF modulating the lifestyle transition between motility and biofilm via HsbR to regulate the DGC activity of WspR.IMPORTANCECyclic di-GMP (c-di-GMP) is a second messenger that controls flagellum biosynthesis, adhesion, virulence, motility, exopolysaccharide production, and biofilm formation in bacteria. Recent research has shown that distinct diguanylate cyclases (DGCs) or phosphodiesterases (PDEs) produce highly specific outputs. Some DGCs and PDEs contribute to the total global c-di-GMP concentration, but others only affect local c-di-GMP in a microenvironment. However, the underlying mechanisms are unclear. Here, we report that FlhF affects the localization and DGC activity of WspR via HsbR and is implicated in local c-di-GMP signaling in . This study establishes the link between the c-di-GMP signaling system and the flagellar localization and provides insight for understanding the complex regulatory network of c-di-GMP signaling.

摘要

在细菌中,第二信使环二鸟苷酸(c-di-GMP)由多个二鸟苷酸环化酶(DGC)和磷酸二酯酶合成和降解。高水平的 c-di-GMP 诱导生物膜形成并抑制运动性。WspR 是一种混合应答调节 DGC,当它被磷酸化时会产生 c-di-GMP。FlhF 是一种信号识别颗粒型 GTPase,最初定位于细胞极,对于 在 中的极性鞭毛定位是必不可少的。在这项研究中,我们报告说 缺失会影响 中的生物膜形成和 c-di-GMP 水平。与野生型菌株 PAO1 相比, 缺失突变体的表型分析显示出生物膜形成增加、刚果红琼脂上的皱缩菌落和 c-di-GMP 水平升高。酵母和细菌双杂交系统显示 FlhF 与应答调节子 HsbR 结合,HsbR 与 WspR 结合。在 Δ 的背景下缺失 或 消除了 Δ 的表型。此外,共聚焦显微镜显示 WspR-GFP 在 PAO1 和 Δ 中分布在整个细胞质中,并在一个细胞极形成可见的簇,但在 Δ 中主要分布在周质的侧面,并在两个细胞极形成可见的簇。这些发现表明 FlhF 影响 WspR 的亚细胞簇和定位,并以依赖于 HsbR 的方式负调控 WspR DGC 活性。总之,我们的研究结果表明,FlhF 通过 HsbR 调节生活方式从运动到生物膜的转变,从而调节 WspR 的 DGC 活性,这是一种新的机制。

相似文献

1
FlhF affects the subcellular clustering of WspR through HsbR in .
Appl Environ Microbiol. 2024 Jan 24;90(1):e0154823. doi: 10.1128/aem.01548-23. Epub 2023 Dec 19.
4
The c-di-GMP Phosphodiesterase PipA (PA0285) Regulates Autoaggregation and Pf4 Bacteriophage Production in Pseudomonas aeruginosa PAO1.
Appl Environ Microbiol. 2022 Jun 28;88(12):e0003922. doi: 10.1128/aem.00039-22. Epub 2022 May 31.
5
Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence.
Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2839-44. doi: 10.1073/pnas.0511090103. Epub 2006 Feb 13.
6
A c-di-GMP Signaling Cascade Controls Motility, Biofilm Formation, and Virulence in Burkholderia thailandensis.
Appl Environ Microbiol. 2022 Apr 12;88(7):e0252921. doi: 10.1128/aem.02529-21. Epub 2022 Mar 24.
9
Evaluation and characterization of the predicted diguanylate cyclase-encoding genes in Pseudomonas aeruginosa.
Microbiologyopen. 2020 Mar;9(3):e975. doi: 10.1002/mbo3.975. Epub 2020 Feb 3.
10
c-di-GMP signaling in Pseudomonas syringae complex.
Microbiol Res. 2023 Oct;275:127445. doi: 10.1016/j.micres.2023.127445. Epub 2023 Jul 6.

引用本文的文献

1
Genetic analysis of flagellar-mediated surface sensing by PA14.
J Bacteriol. 2025 Jun 5:e0052024. doi: 10.1128/jb.00520-24.
3
Genetic Analysis of Flagellar-Mediated Surface Sensing by PA14.
bioRxiv. 2024 Dec 5:2024.12.05.627040. doi: 10.1101/2024.12.05.627040.

本文引用的文献

1
The biofilm life cycle: expanding the conceptual model of biofilm formation.
Nat Rev Microbiol. 2022 Oct;20(10):608-620. doi: 10.1038/s41579-022-00767-0. Epub 2022 Aug 3.
2
The Wsp system of links surface sensing and cell envelope stress.
Proc Natl Acad Sci U S A. 2022 May 3;119(18):e2117633119. doi: 10.1073/pnas.2117633119. Epub 2022 Apr 27.
4
High-specificity local and global c-di-GMP signaling.
Trends Microbiol. 2021 Nov;29(11):993-1003. doi: 10.1016/j.tim.2021.02.003. Epub 2021 Feb 24.
6
The SiaA/B/C/D signaling network regulates biofilm formation in Pseudomonas aeruginosa.
EMBO J. 2020 Aug 3;39(15):e105997. doi: 10.15252/embj.2020105997. Epub 2020 Jul 20.
7
Molecular insights into the master regulator CysB-mediated bacterial virulence in Pseudomonas aeruginosa.
Mol Microbiol. 2019 May;111(5):1195-1210. doi: 10.1111/mmi.14200. Epub 2019 Mar 29.
9
The P-Type ATPase PA1429 Regulates Quorum-Sensing Systems and Bacterial Virulence.
Front Microbiol. 2017 Dec 7;8:2449. doi: 10.3389/fmicb.2017.02449. eCollection 2017.
10
Cyclic di-GMP: second messenger extraordinaire.
Nat Rev Microbiol. 2017 May;15(5):271-284. doi: 10.1038/nrmicro.2016.190. Epub 2017 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验