Suppr超能文献

使用 AlphaFold 对肽-MHC 结构进行精确建模。

Accurate modeling of peptide-MHC structures with AlphaFold.

机构信息

The Simons Center for Systems Biology, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA.

Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Structure. 2024 Feb 1;32(2):228-241.e4. doi: 10.1016/j.str.2023.11.011. Epub 2023 Dec 18.

Abstract

Major histocompatibility complex (MHC) proteins present peptides on the cell surface for T cell surveillance. Reliable in silico prediction of which peptides would be presented and which T cell receptors would recognize them is an important problem in structural immunology. Here, we introduce an AlphaFold-based pipeline for predicting the three-dimensional structures of peptide-MHC complexes for class I and class II MHC molecules. Our method demonstrates high accuracy, outperforming existing tools in class I modeling accuracy and class II peptide register prediction. We validate its performance and utility with new experimental data on a recently described cancer neoantigen/wild-type peptide pair and explore applications toward improving peptide-MHC binding prediction.

摘要

主要组织相容性复合体(MHC)蛋白在细胞表面呈递肽以供 T 细胞监测。可靠地在计算机上预测哪些肽将被呈递,以及哪些 T 细胞受体将识别它们,这是结构免疫学中的一个重要问题。在这里,我们引入了一种基于 AlphaFold 的流水线,用于预测 I 类和 II 类 MHC 分子的肽-MHC 复合物的三维结构。我们的方法表现出很高的准确性,在 I 类建模准确性和 II 类肽寄存器预测方面优于现有工具。我们使用最近描述的癌症新抗原/野生型肽对的新实验数据验证了其性能和实用性,并探索了其在改善肽-MHC 结合预测方面的应用。

相似文献

1
Accurate modeling of peptide-MHC structures with AlphaFold.
Structure. 2024 Feb 1;32(2):228-241.e4. doi: 10.1016/j.str.2023.11.011. Epub 2023 Dec 18.
2
Accurate modeling of peptide-MHC structures with AlphaFold.
bioRxiv. 2023 Mar 8:2023.03.06.531396. doi: 10.1101/2023.03.06.531396.
4
MHC-Fine: Fine-tuned AlphaFold for precise MHC-peptide complex prediction.
Biophys J. 2024 Sep 3;123(17):2902-2909. doi: 10.1016/j.bpj.2024.05.011. Epub 2024 May 15.
5
ERAP1-dependent extreme antigen processing efficacy can govern MHC class I expression hierarchy.
J Immunol. 2025 Jun 1;214(6):1147-1159. doi: 10.1093/jimmun/vkaf013.
6
Solution mapping of MHC-I:TCR interactions using a minimalistic protein system.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2506016122. doi: 10.1073/pnas.2506016122. Epub 2025 Jun 9.
7
Deciphering the MHC immunopeptidome of human cancers with Ligand.MHC atlas.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf314.
9

引用本文的文献

7
Neoantigen-based immunotherapy: advancing precision medicine in cancer and glioblastoma treatment through discovery and innovation.
Explor Target Antitumor Ther. 2025 Apr 27;6:1002313. doi: 10.37349/etat.2025.1002313. eCollection 2025.
8
Molecular Modelling in Bioactive Peptide Discovery and Characterisation.
Biomolecules. 2025 Apr 3;15(4):524. doi: 10.3390/biom15040524.
9
A frameshift-generated cancer neoepitope that controls tumor burden in prophylaxis as well as therapy.
J Immunol. 2025 Jun 1;214(6):1123-1132. doi: 10.1093/jimmun/vkaf016.
10
Predicting reverse-bound peptide conformations in MHC Class II with PANDORA.
Front Immunol. 2025 Mar 24;16:1525576. doi: 10.3389/fimmu.2025.1525576. eCollection 2025.

本文引用的文献

1
Machine learning predictions of MHC-II specificities reveal alternative binding mode of class II epitopes.
Immunity. 2023 Jun 13;56(6):1359-1375.e13. doi: 10.1016/j.immuni.2023.03.009. Epub 2023 Apr 5.
2
Peptide-binding specificity prediction using fine-tuned protein structure prediction networks.
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2216697120. doi: 10.1073/pnas.2216697120. Epub 2023 Feb 21.
3
Structure-based prediction of T cell receptor:peptide-MHC interactions.
Elife. 2023 Jan 20;12:e82813. doi: 10.7554/eLife.82813.
4
Human T cells recognize HLA-DP-bound peptides in two orientations.
Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2214331119. doi: 10.1073/pnas.2214331119. Epub 2022 Nov 29.
5
UniProt: the Universal Protein Knowledgebase in 2023.
Nucleic Acids Res. 2023 Jan 6;51(D1):D523-D531. doi: 10.1093/nar/gkac1052.
6
The IPD-IMGT/HLA Database.
Nucleic Acids Res. 2023 Jan 6;51(D1):D1053-D1060. doi: 10.1093/nar/gkac1011.
7
PANDORA: A Fast, Anchor-Restrained Modelling Protocol for Peptide: MHC Complexes.
Front Immunol. 2022 May 10;13:878762. doi: 10.3389/fimmu.2022.878762. eCollection 2022.
8
Improved prediction of protein-protein interactions using AlphaFold2.
Nat Commun. 2022 Mar 10;13(1):1265. doi: 10.1038/s41467-022-28865-w.
9
Accurate prediction of protein structures and interactions using a three-track neural network.
Science. 2021 Aug 20;373(6557):871-876. doi: 10.1126/science.abj8754. Epub 2021 Jul 15.
10
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验