The Simons Center for Systems Biology, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA.
Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA.
Structure. 2024 Feb 1;32(2):228-241.e4. doi: 10.1016/j.str.2023.11.011. Epub 2023 Dec 18.
Major histocompatibility complex (MHC) proteins present peptides on the cell surface for T cell surveillance. Reliable in silico prediction of which peptides would be presented and which T cell receptors would recognize them is an important problem in structural immunology. Here, we introduce an AlphaFold-based pipeline for predicting the three-dimensional structures of peptide-MHC complexes for class I and class II MHC molecules. Our method demonstrates high accuracy, outperforming existing tools in class I modeling accuracy and class II peptide register prediction. We validate its performance and utility with new experimental data on a recently described cancer neoantigen/wild-type peptide pair and explore applications toward improving peptide-MHC binding prediction.
主要组织相容性复合体(MHC)蛋白在细胞表面呈递肽以供 T 细胞监测。可靠地在计算机上预测哪些肽将被呈递,以及哪些 T 细胞受体将识别它们,这是结构免疫学中的一个重要问题。在这里,我们引入了一种基于 AlphaFold 的流水线,用于预测 I 类和 II 类 MHC 分子的肽-MHC 复合物的三维结构。我们的方法表现出很高的准确性,在 I 类建模准确性和 II 类肽寄存器预测方面优于现有工具。我们使用最近描述的癌症新抗原/野生型肽对的新实验数据验证了其性能和实用性,并探索了其在改善肽-MHC 结合预测方面的应用。