Suppr超能文献

一种基于结构的方法来预测针对公共抗原的T细胞受体的MHC-I限制性。

A structure-guided approach to predict MHC-I restriction of T cell receptors for public antigens.

作者信息

Gupta Sagar, Sgourakis Nikolaos G

机构信息

Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.

出版信息

Structure. 2025 Jul 15. doi: 10.1016/j.str.2025.06.011.

Abstract

Peptides presented by major histocompatibility complex class I (MHC-I) proteins provide biomarkers for therapeutic targeting using T cell receptors (TCRs), TCR-mimicking antibodies (TMAs), or other engineered protein binders. Despite the extreme sequence diversity of the human leukocyte antigen (HLA, the human MHC), a given TCR or TMA is restricted to recognize epitopic peptides in the context of a limited set of different HLA alleles. Here, guided by our analysis of 98 TCR:pHLA complex structures, we identify TCR contact residues and classify 148 common HLA alleles into T cell cross-reactivity groups (T-CREGs) on the basis of their presented surface features. Insights from our work have actionable value for predicting MHC-I restriction of TCRs, guiding therapeutic expansion of existing TCR-based approaches and informing the selection of peptide targets for the development of new therapeutics.

摘要

主要组织相容性复合体I类(MHC-I)蛋白呈递的肽段可为使用T细胞受体(TCR)、TCR模拟抗体(TMA)或其他工程化蛋白结合物进行治疗靶向提供生物标志物。尽管人类白细胞抗原(HLA,即人类MHC)的序列具有极端多样性,但给定的TCR或TMA仅限于在一组有限的不同HLA等位基因背景下识别表位肽段。在此,在对98个TCR:pHLA复合体结构进行分析的指导下,我们确定了TCR接触残基,并根据其呈现的表面特征将148个常见HLA等位基因分类为T细胞交叉反应性组(T-CREG)。我们工作的见解对于预测TCR的MHC-I限制性、指导现有基于TCR方法的治疗性扩展以及为开发新疗法选择肽段靶点具有实际应用价值。

相似文献

2
A structure-guided approach to predict MHC-I restriction of T cell receptors for public antigens.
bioRxiv. 2024 Jun 6:2024.06.04.597418. doi: 10.1101/2024.06.04.597418.
3
Solution mapping of MHC-I:TCR interactions using a minimalistic protein system.
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2506016122. doi: 10.1073/pnas.2506016122. Epub 2025 Jun 9.
4
Integrated system for screening tumor-specific TCRs, epitopes, and HLA subtypes using single-cell sequencing data.
J Immunother Cancer. 2025 Jul 31;13(7):e012029. doi: 10.1136/jitc-2025-012029.
5
HLA-E: Immune Receptor Functional Mechanisms Revealed by Structural Studies.
Immunol Rev. 2025 Jan;329(1):e13434. doi: 10.1111/imr.13434.
6
High-throughput discovery of MHC class I- and II-restricted T cell epitopes using synthetic cellular circuits.
Nat Biotechnol. 2025 Apr;43(4):623-634. doi: 10.1038/s41587-024-02248-6. Epub 2024 Jul 2.
7
Molecular basis for presentation of N-myristoylated peptides by the chicken YF1∗7.1 molecule.
J Biol Chem. 2025 May 22;301(7):110253. doi: 10.1016/j.jbc.2025.110253.
9
ERAP1-dependent extreme antigen processing efficacy can govern MHC class I expression hierarchy.
J Immunol. 2025 Jun 1;214(6):1147-1159. doi: 10.1093/jimmun/vkaf013.
10
A molecular basis underpinning TRBV28 T cell receptor recognition of MR1-antigen.
J Biol Chem. 2025 Jun 24:110416. doi: 10.1016/j.jbc.2025.110416.

本文引用的文献

1
De novo design and structure of a peptide-centric TCR mimic binding module.
Science. 2025 Jul 24;389(6758):375-379. doi: 10.1126/science.adv3813.
2
Design of high-specificity binders for peptide-MHC-I complexes.
Science. 2025 Jul 24;389(6758):386-391. doi: 10.1126/science.adv0185.
3
Antibody Design with SE(3) Diffusion.
J Comput Biol. 2025 Apr;32(4):351-361. doi: 10.1089/cmb.2024.0768. Epub 2024 Dec 27.
4
Targeting peptide antigens using a multiallelic MHC I-binding system.
Nat Biotechnol. 2024 Dec 13. doi: 10.1038/s41587-024-02505-8.
5
Broadening alloselectivity of T cell receptors by structure guided engineering.
Sci Rep. 2024 Nov 6;14(1):26851. doi: 10.1038/s41598-024-75140-7.
6
MHC-Fine: Fine-tuned AlphaFold for precise MHC-peptide complex prediction.
Biophys J. 2024 Sep 3;123(17):2902-2909. doi: 10.1016/j.bpj.2024.05.011. Epub 2024 May 15.
8
Tearing up the traditional biotech playbook.
Nat Biotechnol. 2024 Jan;42(1):1. doi: 10.1038/s41587-023-02119-6.
9
Accurate modeling of peptide-MHC structures with AlphaFold.
Structure. 2024 Feb 1;32(2):228-241.e4. doi: 10.1016/j.str.2023.11.011. Epub 2023 Dec 18.
10
Structural and physical features that distinguish tumor-controlling from inactive cancer neoepitopes.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2312057120. doi: 10.1073/pnas.2312057120. Epub 2023 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验