Suppr超能文献

沿环境梯度普遍存在微生物对溶解有机质的再加工作用。

Universal microbial reworking of dissolved organic matter along environmental gradients.

机构信息

Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.

Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste, Marie, ON, P6A 2E5, Canada.

出版信息

Nat Commun. 2024 Jan 2;15(1):187. doi: 10.1038/s41467-023-44431-4.

Abstract

Soils are losing increasing amounts of carbon annually to freshwaters as dissolved organic matter (DOM), which, if degraded, can offset their carbon sink capacity. However, the processes underlying DOM degradation across environments are poorly understood. Here we show DOM changes similarly along soil-aquatic gradients irrespective of environmental differences. Using ultrahigh-resolution mass spectrometry, we track DOM along soil depths and hillslope positions in forest catchments and relate its composition to soil microbiomes and physico-chemical conditions. Along depths and hillslopes, we find carbohydrate-like and unsaturated hydrocarbon-like compounds increase in abundance-weighted mass, and the expression of genes essential for degrading plant-derived carbohydrates explains >50% of the variation in abundance of these compounds. These results suggest that microbes transform plant-derived compounds, leaving DOM to become increasingly dominated by the same (i.e., universal), difficult-to-degrade compounds as degradation proceeds. By synthesising data from the land-to-ocean continuum, we suggest these processes generalise across ecosystems and spatiotemporal scales. Such general degradation patterns can help predict DOM composition and reactivity along environmental gradients to inform management of soil-to-stream carbon losses.

摘要

土壤每年向淡水流失的碳越来越多,以溶解有机物质(DOM)的形式流失,如果这些 DOM 被降解,可能会抵消其碳汇能力。然而,不同环境中 DOM 降解的潜在过程仍知之甚少。在这里,我们发现无论环境差异如何,DOM 沿着土壤-水域梯度的变化都相似。我们使用超高分辨率质谱法,追踪森林流域土壤深度和山坡位置的 DOM,并将其组成与土壤微生物组和理化条件联系起来。在深度和山坡上,我们发现类似碳水化合物和不饱和碳氢化合物的化合物在丰度加权质量上增加,而降解植物衍生碳水化合物所必需的基因的表达解释了这些化合物丰度变化的>50%。这些结果表明,微生物会转化植物衍生的化合物,使 DOM 逐渐由相同(即普遍存在的)、难以降解的化合物主导,随着降解的进行。通过综合陆地到海洋连续体的数据,我们提出这些过程在生态系统和时空尺度上具有普遍性。这种普遍的降解模式可以帮助预测沿环境梯度的 DOM 组成和反应性,为管理土壤到溪流的碳损失提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c4b/10762207/67f4c1f15385/41467_2023_44431_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验