Suppr超能文献

一种用于预测糖尿病视网膜病变进展时间的深度学习系统。

A deep learning system for predicting time to progression of diabetic retinopathy.

机构信息

Shanghai Belt and Road International Joint Laboratory for Intelligent Prevention and Treatment of Metabolic Disorders, Department of Computer Science and Engineering, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai, China.

MOE Key Laboratory of AI, School of Electronic, Information, and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Nat Med. 2024 Feb;30(2):584-594. doi: 10.1038/s41591-023-02702-z. Epub 2024 Jan 4.

Abstract

Diabetic retinopathy (DR) is the leading cause of preventable blindness worldwide. The risk of DR progression is highly variable among different individuals, making it difficult to predict risk and personalize screening intervals. We developed and validated a deep learning system (DeepDR Plus) to predict time to DR progression within 5 years solely from fundus images. First, we used 717,308 fundus images from 179,327 participants with diabetes to pretrain the system. Subsequently, we trained and validated the system with a multiethnic dataset comprising 118,868 images from 29,868 participants with diabetes. For predicting time to DR progression, the system achieved concordance indexes of 0.754-0.846 and integrated Brier scores of 0.153-0.241 for all times up to 5 years. Furthermore, we validated the system in real-world cohorts of participants with diabetes. The integration with clinical workflow could potentially extend the mean screening interval from 12 months to 31.97 months, and the percentage of participants recommended to be screened at 1-5 years was 30.62%, 20.00%, 19.63%, 11.85% and 17.89%, respectively, while delayed detection of progression to vision-threatening DR was 0.18%. Altogether, the DeepDR Plus system could predict individualized risk and time to DR progression over 5 years, potentially allowing personalized screening intervals.

摘要

糖尿病视网膜病变(DR)是全球可预防失明的主要原因。不同个体的 DR 进展风险差异很大,因此难以预测风险并实现个体化筛查间隔。我们开发并验证了一种深度学习系统(DeepDR Plus),仅通过眼底图像即可预测 5 年内 DR 进展的时间。首先,我们使用来自 179327 名糖尿病患者的 717308 张眼底图像对该系统进行预训练。随后,我们使用一个包含 29868 名糖尿病患者的 118868 张图像的多民族数据集对该系统进行了训练和验证。对于预测 DR 进展的时间,该系统在所有 5 年内的时间点的一致性指数为 0.754-0.846,综合 Brier 分数为 0.153-0.241。此外,我们在具有真实世界的糖尿病患者队列中验证了该系统。与临床工作流程的整合有可能将平均筛查间隔从 12 个月延长至 31.97 个月,并且建议在 1-5 年内进行筛查的患者比例分别为 30.62%、20.00%、19.63%、11.85%和 17.89%,而对威胁视力的 DR 进展的延迟检测率为 0.18%。总的来说,DeepDR Plus 系统可以预测 5 年内的个体风险和 DR 进展时间,从而有可能实现个体化筛查间隔。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76db/10878973/977f68f694a4/41591_2023_2702_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验