Suppr超能文献

一种基于带注意力机制的长短期记忆自动编码器的脊柱手术呼吸运动预测方法

A Respiratory Motion Prediction Method Based on LSTM-AE with Attention Mechanism for Spine Surgery.

作者信息

Han Zhe, Tian Huanyu, Han Xiaoguang, Wu Jiayuan, Zhang Weijun, Li Changsheng, Qiu Liang, Duan Xingguang, Tian Wei

机构信息

School of Medical Technology, Beijing Institute of Technology, Beijing, China.

School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.

出版信息

Cyborg Bionic Syst. 2024 Jan 5;5:0063. doi: 10.34133/cbsystems.0063. eCollection 2024.

Abstract

Respiratory motion-induced vertebral movements can adversely impact intraoperative spine surgery, resulting in inaccurate positional information of the target region and unexpected damage during the operation. In this paper, we propose a novel deep learning architecture for respiratory motion prediction, which can adapt to different patients. The proposed method utilizes an LSTM-AE with attention mechanism network that can be trained using few-shot datasets during operation. To ensure real-time performance, a dimension reduction method based on the respiration-induced physical movement of spine vertebral bodies is introduced. The experiment collected data from prone-positioned patients under general anaesthesia to validate the prediction accuracy and time efficiency of the LSTM-AE-based motion prediction method. The experimental results demonstrate that the presented method (RMSE: 4.39%) outperforms other methods in terms of accuracy within a learning time of 2 min. The maximum predictive errors under the latency of 333 ms with respect to the , , and axes of the optical camera system were 0.13, 0.07, and 0.10 mm, respectively, within a motion range of 2 mm.

摘要

呼吸运动引起的脊柱运动可能会对脊柱手术产生不利影响,导致目标区域的位置信息不准确以及手术过程中的意外损伤。在本文中,我们提出了一种用于呼吸运动预测的新型深度学习架构,该架构可以适应不同患者。所提出的方法利用了带有注意力机制网络的长短期记忆自动编码器(LSTM-AE),其可以在手术期间使用少样本数据集进行训练。为确保实时性能,引入了一种基于脊柱椎体呼吸诱导物理运动的降维方法。实验收集了全身麻醉下俯卧位患者的数据,以验证基于LSTM-AE的运动预测方法的预测准确性和时间效率。实验结果表明,所提出的方法(均方根误差:4.39%)在2分钟的学习时间内,在准确性方面优于其他方法。在光学相机系统的x、y和z轴延迟333毫秒的情况下,在2毫米的运动范围内,最大预测误差分别为0.13、0.07和0.10毫米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3769/10769044/8e5d322b5719/cbsystems.0063.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验