Suppr超能文献

结构-活性关系研究开发作为种属特异性抗菌剂的肽两亲物。

Structure-Activity Relationship Study to Develop Peptide Amphiphiles as Species-Specific Antimicrobials.

机构信息

Department of Pharmaceutical Sciences, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA.

Present address: Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Chemistry. 2024 Mar 12;30(15):e202303986. doi: 10.1002/chem.202303986. Epub 2024 Jan 24.

Abstract

Antimicrobial peptide amphiphiles (PAs) are a promising class of molecules that can disrupt the bacterial membrane or act as drug nanocarriers. In this study, we prepared 33 PAs to establish supramolecular structure-activity relationships. We studied the morphology and activity of the nanostructures against different Gram-positive and Gram-negative bacterial strains (such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii). Next, we used principal component analysis (PCA) to determine the key contributors to activity. We found that for S. aureus, the zeta potential was the major contributor to the activity while Gram-negative bacteria were more influenced by the partition coefficient (LogP) with the following order P. aeruginosa>E. coli>A. baumannii. We also performed a study of the mechanism of action of selected PAs on the bacterial membrane assessing the membrane permeability and depolarization, changes in zeta potential and overall integrity. We studied the toxicity of the nanostructures against mammalian cells. Finally, we performed an in vivo study using the wax moth larvae to determine the therapeutic efficacy of the active PAs. This study shows cationic PA nanostructures can be an intriguing platform for the development of nanoantibacterials.

摘要

抗菌肽两亲分子(PAs)是一类很有前途的分子,能够破坏细菌膜或作为药物纳米载体。在这项研究中,我们制备了 33 种 PAs,以建立超分子结构-活性关系。我们研究了针对不同革兰氏阳性和革兰氏阴性细菌(如金黄色葡萄球菌、大肠杆菌、铜绿假单胞菌和鲍曼不动杆菌)的纳米结构的形态和活性。接下来,我们使用主成分分析(PCA)来确定对活性有贡献的关键因素。我们发现,对于金黄色葡萄球菌,zeta 电位是活性的主要贡献者,而革兰氏阴性细菌受分配系数(LogP)的影响更大,其顺序为铜绿假单胞菌>大肠杆菌>鲍曼不动杆菌。我们还对选定的 PAs 对细菌膜的作用机制进行了研究,评估了膜通透性和去极化、zeta 电位变化以及整体完整性的变化。我们研究了纳米结构对哺乳动物细胞的毒性。最后,我们使用黄粉虫幼虫进行了体内研究,以确定活性 PAs 的治疗效果。这项研究表明,阳离子 PA 纳米结构可以成为开发纳米抗菌剂的一个有趣平台。

相似文献

1
Structure-Activity Relationship Study to Develop Peptide Amphiphiles as Species-Specific Antimicrobials.
Chemistry. 2024 Mar 12;30(15):e202303986. doi: 10.1002/chem.202303986. Epub 2024 Jan 24.
2
Design, Synthesis, and Nanostructure-Dependent Antibacterial Activity of Cationic Peptide Amphiphiles.
ACS Appl Mater Interfaces. 2019 Jan 23;11(3):2790-2801. doi: 10.1021/acsami.8b17808. Epub 2019 Jan 10.
5
Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78.
Biochim Biophys Acta. 2015 May;1848(5):1139-46. doi: 10.1016/j.bbamem.2015.02.001. Epub 2015 Feb 10.
7
Segment-Based Peptide Design Reveals the Importance of N-Terminal High Cationicity for Antimicrobial Activity Against Gram-Negative Pathogens.
Probiotics Antimicrob Proteins. 2025 Feb;17(1):15-34. doi: 10.1007/s12602-024-10376-3. Epub 2024 Oct 8.
9
Evaluation of Antimicrobial Peptides from the Black Soldier Fly () against a Selection of Human Pathogens.
Microbiol Spectr. 2022 Feb 23;10(1):e0166421. doi: 10.1128/spectrum.01664-21. Epub 2022 Jan 5.
10
The antimicrobial activity of the appetite peptide hormone ghrelin.
Peptides. 2012 Aug;36(2):151-6. doi: 10.1016/j.peptides.2012.05.006. Epub 2012 May 22.

引用本文的文献

2
Protein-based nanoparticles for antimicrobial and cancer therapy: implications for public health.
RSC Adv. 2025 May 8;15(19):14966-15016. doi: 10.1039/d5ra01427a. eCollection 2025 May 6.

本文引用的文献

2
Self-Assembly of Antimicrobial Peptoids Impacts Their Biological Effects on Bacterial Pathogens.
ACS Infect Dis. 2022 Mar 11;8(3):533-545. doi: 10.1021/acsinfecdis.1c00536. Epub 2022 Feb 17.
3
: The Versatile Host for Drug Discovery, In Vivo Toxicity Testing and Characterising Host-Pathogen Interactions.
Antibiotics (Basel). 2021 Dec 17;10(12):1545. doi: 10.3390/antibiotics10121545.
4
Antibiotics in the pipeline: a literature review (2017-2020).
Infection. 2022 Jun;50(3):553-564. doi: 10.1007/s15010-021-01709-3. Epub 2021 Oct 4.
6
Fatty acid modified-antimicrobial peptide analogues with potent antimicrobial activity and topical therapeutic efficacy against Staphylococcus hyicus.
Appl Microbiol Biotechnol. 2021 Aug;105(14-15):5845-5859. doi: 10.1007/s00253-021-11454-0. Epub 2021 Jul 28.
7
Control of Peptide Amphiphile Supramolecular Nanostructures by Isosteric Replacements.
Biomacromolecules. 2021 Aug 9;22(8):3274-3283. doi: 10.1021/acs.biomac.1c00379. Epub 2021 Jul 22.
8
Antimicrobial peptides towards clinical application: Delivery and formulation.
Adv Drug Deliv Rev. 2021 Aug;175:113818. doi: 10.1016/j.addr.2021.05.028. Epub 2021 Jun 4.
9
Evaluation of surface active and antimicrobial properties of alkyl D-lyxosides and alkyl L-rhamnosides as green surfactants.
Chemosphere. 2021 May;271:129818. doi: 10.1016/j.chemosphere.2021.129818. Epub 2021 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验