Suppr超能文献

蓝氏贾第鞭毛虫核糖体结构揭示了几种生物途径的差异和依米丁的作用模式。

The Giardia lamblia ribosome structure reveals divergence in several biological pathways and the mode of emetine function.

机构信息

Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA.

Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA BioScience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.

出版信息

Structure. 2024 Apr 4;32(4):400-410.e4. doi: 10.1016/j.str.2023.12.015. Epub 2024 Jan 18.

Abstract

Giardia lamblia is a deeply branching protist and a human pathogen. Its unusual biology presents the opportunity to explore conserved and fundamental molecular mechanisms. We determined the structure of the G. lamblia 80S ribosome bound to tRNA, mRNA, and the antibiotic emetine by cryo-electron microscopy, to an overall resolution of 2.49 Å. The structure reveals rapidly evolving protein and nucleotide regions, differences in the peptide exit tunnel, and likely altered ribosome quality control pathways. Examination of translation initiation factor binding sites suggests these interactions are conserved despite a divergent initiation mechanism. Highlighting the potential of G. lamblia to resolve conserved biological principles; our structure reveals the interactions of the translation inhibitor emetine with the ribosome and mRNA, thus providing insight into the mechanism of action for this widely used antibiotic. Our work defines key questions in G. lamblia and motivates future experiments to explore the diversity of eukaryotic gene regulation.

摘要

蓝氏贾第鞭毛虫是一种深分枝的原生动物,也是一种人类病原体。其不同寻常的生物学特性为探索保守和基本的分子机制提供了机会。我们通过冷冻电子显微镜确定了与 tRNA、mRNA 和抗生素依米丁结合的 G. lamblia 80S 核糖体的结构,整体分辨率为 2.49 Å。该结构揭示了快速进化的蛋白质和核苷酸区域、肽出口隧道的差异,以及可能改变的核糖体质量控制途径。对翻译起始因子结合位点的检查表明,尽管起始机制不同,但这些相互作用是保守的。突出了蓝氏贾第鞭毛虫在解决保守生物学原理方面的潜力;我们的结构揭示了翻译抑制剂依米丁与核糖体和 mRNA 的相互作用,从而为这种广泛使用的抗生素的作用机制提供了深入的了解。我们的工作定义了蓝氏贾第鞭毛虫中的关键问题,并激发了未来的实验来探索真核基因调控的多样性。

相似文献

1
The Giardia lamblia ribosome structure reveals divergence in several biological pathways and the mode of emetine function.
Structure. 2024 Apr 4;32(4):400-410.e4. doi: 10.1016/j.str.2023.12.015. Epub 2024 Jan 18.
2
A glimpse into Giardia lamblia unique translational machinery.
Structure. 2024 Apr 4;32(4):377-379. doi: 10.1016/j.str.2024.03.001.
6
Cryo-EM structure of wheat ribosome reveals unique features of the plant ribosomes.
Structure. 2024 May 2;32(5):562-574.e3. doi: 10.1016/j.str.2024.02.006. Epub 2024 Mar 7.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
8
The UFM1 E3 ligase recognizes and releases 60S ribosomes from ER translocons.
Nature. 2024 Mar;627(8003):437-444. doi: 10.1038/s41586-024-07093-w. Epub 2024 Feb 21.
9
Carbamazepine versus phenytoin monotherapy for epilepsy: an individual participant data review.
Cochrane Database Syst Rev. 2017 Feb 27;2(2):CD001911. doi: 10.1002/14651858.CD001911.pub3.
10
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.

引用本文的文献

2
Structure of an archaeal ribosome reveals a divergent active site and hibernation factor.
Nat Microbiol. 2025 Jul 17. doi: 10.1038/s41564-025-02065-w.
3
High-Throughput Repurposing Screen Reveals Compounds with Activity against Bradyzoites.
ACS Infect Dis. 2025 Mar 14;11(3):600-609. doi: 10.1021/acsinfecdis.4c00689. Epub 2025 Feb 11.
5
High Throughput Repurposing Screen Reveals Compounds with Activity Against Bradyzoites.
bioRxiv. 2024 Aug 22:2024.07.01.601569. doi: 10.1101/2024.07.01.601569.
7
Precise gene models using long-read sequencing reveal a unique poly(A) signal in .
RNA. 2022 May;28(5):668-682. doi: 10.1261/rna.078793.121. Epub 2022 Feb 2.
8
Cryo-EM structure of the ancient eukaryotic ribosome from the human parasite Giardia lamblia.
Nucleic Acids Res. 2022 Feb 22;50(3):1770-1782. doi: 10.1093/nar/gkac046.

本文引用的文献

2
Ribosome collisions induce mRNA cleavage and ribosome rescue in bacteria.
Nature. 2022 Mar;603(7901):503-508. doi: 10.1038/s41586-022-04416-7. Epub 2022 Mar 9.
3
Cryo-EM structure of the ancient eukaryotic ribosome from the human parasite Giardia lamblia.
Nucleic Acids Res. 2022 Feb 22;50(3):1770-1782. doi: 10.1093/nar/gkac046.
4
Structure of a human 48 translational initiation complex.
Science. 2020 Sep 4;369(6508):1220-1227. doi: 10.1126/science.aba4904.
6
translational machinery condones polyadenosine repeats.
Elife. 2020 May 29;9:e57799. doi: 10.7554/eLife.57799.
7
Identification and evolutionary analysis of the nucleolar proteome of Giardia lamblia.
BMC Genomics. 2020 Mar 30;21(1):269. doi: 10.1186/s12864-020-6679-9.
8
Drug resistance in Giardia: Mechanisms and alternative treatments for Giardiasis.
Adv Parasitol. 2020;107:201-282. doi: 10.1016/bs.apar.2019.11.003. Epub 2020 Jan 17.
9
Ornithine capture by a translating ribosome controls bacterial polyamine synthesis.
Nat Microbiol. 2020 Apr;5(4):554-561. doi: 10.1038/s41564-020-0669-1. Epub 2020 Feb 24.
10
A chromosome-scale reference genome for Giardia intestinalis WB.
Sci Data. 2020 Feb 4;7(1):38. doi: 10.1038/s41597-020-0377-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验