Suppr超能文献

使用无偏倚血浆蛋白质组学鉴定阿尔茨海默病及相关痴呆症的新型生物标志物

Identification of Novel Biomarkers for Alzheimer's Disease and Related Dementias Using Unbiased Plasma Proteomics.

作者信息

Lacar Benjamin, Ferdosi Shadi, Alavi Amir, Stukalov Alexey, Venkataraman Guhan R, de Geus Matthijs, Dodge Hiroko, Wu Chao-Yi, Kivisakk Pia, Das Sudeshna, Guturu Harendra, Hyman Brad, Batzoglou Serafim, Arnold Steven E, Siddiqui Asim

机构信息

Seer, Inc., Redwood City, CA, 94065 USA.

Massachusetts General Hospital (MGH), 55 Fruit Street, Boston, Massachusetts 02114.

出版信息

bioRxiv. 2024 Jan 8:2024.01.05.574446. doi: 10.1101/2024.01.05.574446.

Abstract

Alzheimer's disease (AD) and related dementias (ADRD) is a complex disease with multiple pathophysiological drivers that determine clinical symptomology and disease progression. These diseases develop insidiously over time, through many pathways and disease mechanisms and continue to have a huge societal impact for affected individuals and their families. While emerging blood-based biomarkers, such as plasma p-tau181 and p-tau217, accurately detect Alzheimer neuropthology and are associated with faster cognitive decline, the full extension of plasma proteomic changes in ADRD remains unknown. Earlier detection and better classification of the different subtypes may provide opportunities for earlier, more targeted interventions, and perhaps a higher likelihood of successful therapeutic development. In this study, we aim to leverage unbiased mass spectrometry proteomics to identify novel, blood-based biomarkers associated with cognitive decline. 1,786 plasma samples from 1,005 patients were collected over 12 years from partcipants in the Massachusetts Alzheimer's Disease Research Center Longitudinal Cohort Study. Patient metadata includes demographics, final diagnoses, and clinical dementia rating (CDR) scores taken concurrently. The Proteograph Product Suite (Seer, Inc.) and liquid-chromatography mass-spectrometry (LC-MS) analysis were used to process the plasma samples in this cohort and generate unbiased proteomics data. Data-independent acquisition (DIA) mass spectrometry results yielded 36,259 peptides and 4,007 protein groups. Linear mixed effects models revealed 138 differentially abundant proteins between AD and healthy controls. Machine learning classification models for AD diagnosis identified potential candidate biomarkers including MBP, BGLAP, and APoD. Cox regression models were created to determine the association of proteins with disease progression and suggest CLNS1A, CRISPLD2, and GOLPH3 as targets of further investigation as potential biomarkers. The Proteograph workflow provided deep, unbiased coverage of the plasma proteome at a speed that enabled a cohort study of almost 1,800 samples, which is the largest, deep, unbiased proteomics study of ADRD conducted to date.

摘要

阿尔茨海默病(AD)及相关痴呆症(ADRD)是一种复杂的疾病,具有多种病理生理驱动因素,这些因素决定了临床症状和疾病进展。这些疾病随着时间的推移逐渐发展,通过多种途径和疾病机制,并且继续对受影响的个体及其家庭产生巨大的社会影响。虽然新兴的基于血液的生物标志物,如血浆p-tau181和p-tau217,能够准确检测阿尔茨海默神经病理学,并与更快的认知衰退相关,但ADRD中血浆蛋白质组变化的全貌仍不清楚。对不同亚型进行更早的检测和更好的分类可能为更早、更有针对性的干预提供机会,也许还有更高的成功治疗开发可能性。在本研究中,我们旨在利用无偏质谱蛋白质组学来识别与认知衰退相关的新型血液生物标志物。在12年的时间里,从马萨诸塞州阿尔茨海默病研究中心纵向队列研究的参与者中收集了1005名患者的1786份血浆样本。患者元数据包括人口统计学信息、最终诊断结果以及同时采集的临床痴呆评定(CDR)分数。使用Proteograph产品套件(Seer公司)和液相色谱-质谱(LC-MS)分析来处理该队列中的血浆样本,并生成无偏蛋白质组学数据。数据非依赖采集(DIA)质谱结果产生了36259个肽段和4007个蛋白质组。线性混合效应模型显示AD患者与健康对照之间有138种差异丰富的蛋白质。用于AD诊断的机器学习分类模型确定了潜在的候选生物标志物,包括髓鞘碱性蛋白(MBP)、骨钙素(BGLAP)和载脂蛋白D(APoD)。创建了Cox回归模型来确定蛋白质与疾病进展的关联,并提出将CLNS1A、CRISPLD2和高尔基体蛋白3(GOLPH3)作为进一步研究的潜在生物标志物靶点。Proteograph工作流程以能够对近1800个样本进行队列研究的速度,提供了对血浆蛋白质组的深度、无偏覆盖,这是迄今为止进行的最大规模、深度、无偏的ADRD蛋白质组学研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42bf/10802486/3f2b7f5f6b6f/nihpp-2024.01.05.574446v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验