Department of Anesthesiology.
Pediatric Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, School of Medicine and National Children's Medical Center, Shanghai Jiao Tong University.
Int J Surg. 2024 Apr 1;110(4):2207-2216. doi: 10.1097/JS9.0000000000001112.
Major adverse postoperative outcomes (APOs) can greatly affect mortality, hospital stay, care management and planning, and quality of life. This study aimed to evaluate the performance of five machine learning (ML) algorithms for predicting four major APOs after pediatric congenital heart surgery and their clinically meaningful model interpretations.
Between August 2014 and December 2021, 23 000 consecutive pediatric patients receiving congenital heart surgery were enrolled. Based on the split date of 1 January 2019, the authors selected 13 927 participants for the training cohort, and 9073 participants for the testing cohort. Four predefined major APOs including low cardiac output syndrome (LCOS), pneumonia, renal failure, and deep venous thrombosis (DVT) were investigated. Thirty-nine clinical and laboratory features were inputted in five ML models: light gradient boosting machine (LightGBM), logistic regression (LR), support vector machine, random forest, and CatBoost. The performance and interpretations of ML models were evaluated using the area under the receiver operating characteristic curve (AUC) and Shapley Additive Explanations (SHAP).
In the training cohort, CatBoost algorithms outperformed others with the mean AUCs of 0.908 for LCOS and 0.957 for renal failure, while LightGBM and LR achieved the best mean AUCs of 0.886 for pneumonia and 0.942 for DVT, respectively. In the testing cohort, the best-performing ML model for each major APOs with the following mean AUCs: LCOS (LightGBM), 0.893 (95% CI: 0.884-0.895); pneumonia (LR), 0.929 (95% CI: 0.926-0.931); renal failure (LightGBM), 0.963 (95% CI: 0.947-0.979), and DVT (LightGBM), 0.970 (95% CI: 0.953-0.982). The performance of ML models using only clinical variables was slightly lower than those using combined data, with the mean AUCs of 0.873 for LCOS, 0.894 for pneumonia, 0.953 for renal failure, and 0.933 for DVT. The SHAP showed that mechanical ventilation time was the most important contributor of four major APOs.
In pediatric congenital heart surgery, the established ML model can accurately predict the risk of four major APOs, providing reliable interpretations for high-risk contributor identification and informed clinical decisions-making.
主要术后不良结局(APO)会极大地影响死亡率、住院时间、护理管理和计划以及生活质量。本研究旨在评估五种机器学习(ML)算法预测小儿先天性心脏病手术后四种主要 APO 的性能及其有临床意义的模型解释。
2014 年 8 月至 2021 年 12 月,连续纳入 23000 例接受先天性心脏病手术的小儿患者。根据 2019 年 1 月 1 日的分割日期,作者选择了 13927 名参与者用于训练队列,9073 名参与者用于测试队列。研究了四个预先设定的主要 APO,包括低心输出综合征(LCOS)、肺炎、肾衰竭和深静脉血栓形成(DVT)。将 39 项临床和实验室特征输入到五个 ML 模型中:轻梯度提升机(LightGBM)、逻辑回归(LR)、支持向量机、随机森林和 CatBoost。使用接收者操作特征曲线(AUC)和 Shapley 加性解释(SHAP)评估 ML 模型的性能和解释。
在训练队列中,CatBoost 算法的平均 AUC 为 0.908,表现优于其他算法,用于预测 LCOS;0.957 用于预测肾衰竭,而 LightGBM 和 LR 则分别获得了最佳的平均 AUC,用于预测肺炎为 0.886,用于预测 DVT 为 0.942。在测试队列中,每个主要 APO 表现最好的 ML 模型具有以下平均 AUC:LCOS(LightGBM),0.893(95%CI:0.884-0.895);肺炎(LR),0.929(95%CI:0.926-0.931);肾衰竭(LightGBM),0.963(95%CI:0.947-0.979),DVT(LightGBM),0.970(95%CI:0.953-0.982)。仅使用临床变量的 ML 模型的性能略低于使用组合数据的模型,LCOS 的平均 AUC 为 0.873,肺炎为 0.894,肾衰竭为 0.953,DVT 为 0.933。SHAP 表明机械通气时间是四个主要 APO 的最重要贡献者。
在小儿先天性心脏病手术中,建立的 ML 模型可以准确预测四种主要 APO 的风险,为高危因素识别和临床决策提供可靠解释。