Suppr超能文献

过表达的转基因甘蔗在盐分和水分亏缺胁迫条件下的形成期提高了发芽率和生物量产量。

Transgenic sugarcane overexpressing improved germination and biomass production at formative stage under salinity and water-deficit stress conditions.

作者信息

Mohanan Manoj Vadakkenchery, Thelakat Sasikumar Sarath Padmanabhan, Jayanarayanan Ashwin Narayan, Selvarajan Dharshini, Ramanathan Valarmathi, Shivalingamurthy Suresha Giriyapura, Raju Gomathi, Govind Hemaprabha, Chinnaswamy Appunu

机构信息

Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India.

Division of Crop Production, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641007 India.

出版信息

3 Biotech. 2024 Feb;14(2):52. doi: 10.1007/s13205-023-03856-w. Epub 2024 Jan 23.

Abstract

The glyoxalase system, involving Glyoxalase I (GlyI) and Glyoxalase II (Gly II), plays a vital role in abiotic stress tolerance in plants. A novel enzyme Glyoxalase III (Gly III) was found recently from bacteria, yeast, and plant species. This enzyme provides a new way to detoxify Methylglyoxal (MG), a cytotoxic α-oxoaldehyde, which, in excess, can cause complete cell destruction by forming Reactive Oxygen Species (ROS) and Advanced Glycation End products (AGEs) or DNA/RNA mutation. In this background, the current study examined sugarcane transgenic events that exhibit an increase in expression of EaGly III, to assess their performance in terms of germination and biomass production during formative stage under stress conditions. Southern blot analysis outcomes confirmed the integration of transgene in the transgenic plants. The results from quantitative RT-PCR analyses confirmed high expression levels of in transgenic events compared to wild type (WT) under salinity (100 and 200 mM NaCl) and drought (withholding watering) conditions. Transgenic events exhibited enhanced biomass productivity ranged between 0.141 Kg/pot and 0.395 Kg/pot under 200 mM salinity and 0.262 Kg/pot and 0.666 Kg/pot under drought stress. Further, transgenic events observed significantly higher germination rates under salinity and drought conditions compared to that of WT. Subcellular localization prediction by - fusion expression in sugarcane callus showed that it is distributed across the cytoplasm, thus indicating its widespread activity within the cell. These results strongly suggest that enhancing activity is a useful strategy to improve the salinity and drought-tolerance in sugarcane as well as other crops.

摘要

乙二醛酶系统由乙二醛酶I(GlyI)和乙二醛酶II(Gly II)组成,在植物的非生物胁迫耐受性中起着至关重要的作用。最近在细菌、酵母和植物物种中发现了一种新型酶乙二醛酶III(Gly III)。这种酶为甲基乙二醛(MG)的解毒提供了一种新途径,甲基乙二醛是一种细胞毒性α-氧代醛,过量时可通过形成活性氧(ROS)和晚期糖基化终产物(AGEs)或DNA/RNA突变导致细胞完全破坏。在此背景下,本研究检测了表现出EaGly III表达增加的甘蔗转基因事件,以评估它们在胁迫条件下生长阶段的发芽和生物量生产性能。Southern杂交分析结果证实了转基因在转基因植物中的整合。定量RT-PCR分析结果证实,在盐度(100和200 mM NaCl)和干旱(停水)条件下,与野生型(WT)相比,转基因事件中 的表达水平较高。在200 mM盐度下,转基因事件的生物量生产力提高,范围在0.141 Kg/盆至0.395 Kg/盆之间;在干旱胁迫下,范围在0.262 Kg/盆至0.666 Kg/盆之间。此外,与WT相比,转基因事件在盐度和干旱条件下的发芽率显著更高。通过在甘蔗愈伤组织中进行 - 融合表达的亚细胞定位预测表明,它分布在整个细胞质中,从而表明其在细胞内具有广泛的活性。这些结果有力地表明,提高 活性是提高甘蔗以及其他作物的盐度和耐旱性的有用策略。

相似文献

3
Overexpression of Glyoxalase III gene in transgenic sugarcane confers enhanced performance under salinity stress.
J Plant Res. 2021 Sep;134(5):1083-1094. doi: 10.1007/s10265-021-01300-9. Epub 2021 Apr 22.
8
Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance.
Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14672-7. doi: 10.1073/pnas.2034667100. Epub 2003 Nov 24.

引用本文的文献

本文引用的文献

1
Transgenic sugarcane with higher levels of BRK1 showed improved drought tolerance.
Plant Cell Rep. 2023 Oct;42(10):1611-1628. doi: 10.1007/s00299-023-03056-z. Epub 2023 Aug 14.
3
Raising Climate-Resilient Crops: Journey From the Conventional Breeding to New Breeding Approaches.
Curr Genomics. 2021 Dec 30;22(6):450-467. doi: 10.2174/1389202922666210928151247.
4
Overexpression of Glyoxalase III gene in transgenic sugarcane confers enhanced performance under salinity stress.
J Plant Res. 2021 Sep;134(5):1083-1094. doi: 10.1007/s10265-021-01300-9. Epub 2021 Apr 22.
8
Isolation and characterization of water-deficit stress-responsive α-expansin 1 () gene from complex.
3 Biotech. 2019 May;9(5):186. doi: 10.1007/s13205-019-1719-3. Epub 2019 Apr 24.
10
Mechanism of the drought tolerance of a transgenic soybean overexpressing the molecular chaperone BiP.
Physiol Mol Biol Plants. 2019 Mar;25(2):457-472. doi: 10.1007/s12298-019-00643-x. Epub 2019 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验