Suppr超能文献

人工智能预测模型在前列腺癌激素治疗中的应用。

Artificial Intelligence Predictive Model for Hormone Therapy Use in Prostate Cancer.

机构信息

Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University, Cleveland.

Department of Electrical Engineering, Stanford University, Stanford, CA.

出版信息

NEJM Evid. 2023 Aug;2(8):EVIDoa2300023. doi: 10.1056/EVIDoa2300023. Epub 2023 Jun 29.

Abstract

BACKGROUND

Androgen deprivation therapy (ADT) with radiotherapy can benefit patients with localized prostate cancer. However, ADT can negatively impact quality of life, and there remain no validated predictive models to guide its use. METHODS: We used digital pathology images from pretreatment prostate tissue and clinical data from 5727 patients enrolled in five phase 3 randomized trials, in which treatment was radiotherapy with or without ADT, as our data source to develop and validate an artificial intelligence (AI)–derived predictive patient-specific model that would determine which patients would develop the primary end point of distant metastasis. The model used baseline data to provide a binary output that a given patient will likely benefit from ADT or not. After the model was locked, validation was performed using data from NRG Oncology/Radiation Therapy Oncology Group (RTOG) 9408 (n=1594), a trial that randomly assigned men to radiotherapy plus or minus 4 months of ADT. Fine–Gray regression and restricted mean survival times were used to assess the interaction between treatment and the predictive model and within predictive model–positive, i.e., benefited from ADT, and –negative subgroup treatment effects. RESULTS: Overall, in the NRG/RTOG 9408 validation cohort (14.9 years of median follow-up), ADT significantly improved time to distant metastasis. Of these enrolled patients, 543 (34%) were model positive, and ADT significantly reduced the risk of distant metastasis compared with radiotherapy alone. Of 1051 patients who were model negative, ADT did not provide benefit. CONCLUSIONS: Our AI-based predictive model was able to identify patients with a predominantly intermediate risk for prostate cancer likely to benefit from short-term ADT. (Supported by a grant [U10CA180822] from NRG Oncology Statistical and Data Management Center, a grant [UG1CA189867] from NCI Community Oncology Research Program, a grant [U10CA180868] from NRG Oncology Operations, and a grant [U24CA196067] from NRG Specimen Bank from the National Cancer Institute and by Artera, Inc. ClinicalTrials.gov numbers NCT00767286, NCT00002597, NCT00769548, NCT00005044, and NCT00033631.)

摘要

背景

雄激素剥夺疗法(ADT)联合放疗可使局限性前列腺癌患者受益。然而,ADT 会对生活质量产生负面影响,并且目前还没有经过验证的预测模型来指导其使用。

方法

我们使用了来自 5727 名患者的预处理前列腺组织的数字病理学图像和来自 5 项 3 期随机试验的临床数据,这些患者接受了放疗联合或不联合 ADT 治疗,作为我们的数据来源,以开发和验证一种人工智能(AI)衍生的预测性个体化模型,该模型可确定哪些患者会出现远处转移这一主要终点。该模型使用基线数据提供一个二元输出,即给定的患者是否可能从 ADT 中获益。在模型锁定后,使用 NRG Oncology/Radiation Therapy Oncology Group(RTOG)9408 试验的数据(n=1594)进行验证,该试验将男性随机分配接受放疗加或不加 4 个月的 ADT。精细灰色回归和受限平均生存时间用于评估治疗与预测模型之间的相互作用,以及预测模型阳性(即从 ADT 中获益)和阴性亚组的治疗效果。

结果

总体而言,在 NRG/RTOG 9408 验证队列(中位随访 14.9 年)中,ADT 显著改善了远处转移的时间。在这些入组患者中,543 名(34%)为模型阳性,与单独放疗相比,ADT 显著降低了远处转移的风险。在 1051 名模型阴性的患者中,ADT 没有获益。

结论

我们的基于 AI 的预测模型能够识别出具有中危前列腺癌风险的患者,这些患者可能从短期 ADT 中获益。(由 NRG Oncology 统计和数据管理中心的一项拨款[U10CA180822]、NCI 社区肿瘤学研究计划的一项拨款[UG1CA189867]、NRG Oncology 运营的一项拨款[U10CA180868]和 NRG 标本库的一项拨款[U24CA196067]资助,NRG 标本库由美国国立癌症研究所提供,由 Artera,Inc. 提供。临床试验.gov 编号:NCT00767286、NCT00002597、NCT00769548、NCT00005044 和 NCT00033631。)

相似文献

1
Artificial Intelligence Predictive Model for Hormone Therapy Use in Prostate Cancer.
NEJM Evid. 2023 Aug;2(8):EVIDoa2300023. doi: 10.1056/EVIDoa2300023. Epub 2023 Jun 29.
2
Artificial Intelligence Predictive Model for Hormone Therapy Use in Prostate Cancer.
Res Sq. 2023 Apr 21:rs.3.rs-2790858. doi: 10.21203/rs.3.rs-2790858/v1.
5
Radiotherapy and short-term androgen deprivation for localized prostate cancer.
N Engl J Med. 2011 Jul 14;365(2):107-18. doi: 10.1056/NEJMoa1012348.

引用本文的文献

1
Biomarkers in Localized Prostate Cancer: From Diagnosis to Treatment.
Int J Mol Sci. 2025 Aug 8;26(16):7667. doi: 10.3390/ijms26167667.
4
Deep Learning on Histopathological Images to Predict Breast Cancer Recurrence Risk and Chemotherapy Benefit.
medRxiv. 2025 May 16:2025.05.15.25327686. doi: 10.1101/2025.05.15.25327686.
5
Artificial intelligence in prostate cancer.
Chin Med J (Engl). 2025 Aug 5;138(15):1769-1782. doi: 10.1097/CM9.0000000000003689. Epub 2025 Jul 9.
6
Biopsy-free radical prostatectomy: a narrative review considering rationale, limitations, and current data.
Prostate Int. 2025 Jun;13(2):67-73. doi: 10.1016/j.prnil.2025.03.003. Epub 2025 Mar 18.
9
Transforming Prostate Cancer Care: Innovations in Diagnosis, Treatment, and Future Directions.
Int J Mol Sci. 2025 Jun 4;26(11):5386. doi: 10.3390/ijms26115386.
10
Navigating the Transformative Impact of Artificial Intelligence in Health Services Research.
Health Sci Rep. 2025 Jun 4;8(6):e70793. doi: 10.1002/hsr2.70793. eCollection 2025 Jun.

本文引用的文献

3
Striving for Diversity in Research Studies.
N Engl J Med. 2021 Oct 7;385(15):1429-1430. doi: 10.1056/NEJMe2114651. Epub 2021 Sep 13.
6
NCCN Guidelines Insights: Prostate Cancer, Version 1.2021.
J Natl Compr Canc Netw. 2021 Feb 2;19(2):134-143. doi: 10.6004/jnccn.2021.0008.
10
Development and Validation of a Novel Integrated Clinical-Genomic Risk Group Classification for Localized Prostate Cancer.
J Clin Oncol. 2018 Feb 20;36(6):581-590. doi: 10.1200/JCO.2017.74.2940. Epub 2017 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验